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ABS  0T

The structure of some convective 3 laminar boundary layers in a

high density shock-heated 1 eV argon plasma is investigated theoretically.

A general three-fluid continuum formulation of the problem is presented,

and the equations solved for the case of thermo-chemical equilibrium with

no applied electromagnetic fields. Solutions for boundary layer profiles

and other quantities are presented for plasma boundary layers forming

over a cold 3 infinite flat plate with an impulsively started motion in

its own plane (Rayleigh's boundary layer), and the boundary layer behind

a plane 3 ionizing shock wave moving over an infinite plane wall (shock

tube side-wall boundary layer). Accurate transport data for partially

ionized argon are calculated and used in the analysis° The induced elec-

tric field is shown to be of fundamental importance to these properties°

Associated with the ambipolar diffusion is an electric potential difference

f

of the order lO Volts, which is much larger than the potential difference

across the sheath. The assumptions of chemical and temperature equilibrium

are checked in a rigorous way. It is found that equilibrium ionization

will not exist close to the wall below typically IO,O00°K_ and that the

electron temperature 3 which was calculated in a linearized model_ is

larger than the ion-atom temperature in the same region.
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i. INTRODUCTION

With the advent of high speed flight through planetary atmospheres

laminar boundary layers in ionized gases have becomeincreasingly

important° More generally_ the interaction between a moving plasma and

a cold wall is of basic physical interest. The associated phenomenaare

considerably different in nature from those involving non-ionized gases

and are presently far from being completely understoodo The presence of

free electrons and ions, for example_ gives rise to induced electro-

magnetic fields partly due to the vast difference in relative diffusional

behavior of the electrons and the heavy gas components° _ch fields may

couple the motion of the charged particles to the extent that the plasma

transport properties are affected. In addition_ finite gas phase reaction

rates and energy transfer rates 3 in particular those between the electrons

and the heavy particles 3 raise the question of deviation from thermo-

chemical equilibrium° The local composition of the gas may deviate

substantially from its equilibrium value, and the electron temperature

may assumea different value from that of the ions and atoms° The present,

report is part of a combined theoretical and experimental program aimed

at studying transport phenomena like the above mentioned in moving

high density plasmas°

Available information on the structure of laminar ionized boundary

layers and interactions between high density plasmas and solid walls is

scarce° Most of the reported work is theoretical° Since the full

problem is so extensive_ it is natural that early investigators treated

these problems only in some simple limits° Thus, Fay and Kemp [i]
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studied the stagnation point boundary layer in ai_ assuming frozen or

equilibrium flow in a simple "binary diffusion" model. Rose and

Stankevics [2] measuredheat transfer rates from such a boundary layer

using a shock tube° Their results agreed well with the theory. Camac,

Fay_ Feinberg, and Kemp[3] studied the shock tube end wall boundary

layer in argon theoretically and experimentally. For atomic argon they

found good agreementbetween measuredand predicted wall heat transfer

rates° In strongly ionized argon the agreementwas fair.

A great numberof investigators have treated weakly ionized boundary

layers with emphasison the electrical characteristics. Principally_

these papers have been aimed toward a better understanding of Langmuir

probes. Confining ourselves to the case of collision-dominated inter-

actions 3 with the possible exception of the charge separation sheath

close to the solid surface_ a few relevant papers can be mentioned.

Pollin [4] madea theoretical and experimental investigation of a

stagnation point Langmuir probe in a shock tube with weakly ionized

air. In the experiment he applied a very strong negative voltage on the

probe in order to repel all electrons and collect only an ion current.

The measuredcurrent-voltage profiles were in part predicted by the theory_

which neglected ion-electron recombinations in the boundary layer and

the sheath. In the sheath the motion of the ions was considered to be

collision-dominated. Turcotte and Gillespie [5] made a preliminary

study with a shock tube side-wall probe_ also in weakly ionized air.

They measured the total resistance and the potential difference across

the shock tube side-wall boundary layer. This potential difference was

all attributed to the collision-dominated thin sheath of charge separation



over the cold wall. They were not able to explain why the measured

total potential difference was 5-10 times larger than the theoretically

calculated potential difference across the sheath° An explanation is

clearly given by the present investigation° Wewill find that typically

under collision-dominated conditions the potential difference across the

ambipolar region outside of the sheath is not negligible_but often as

large as one order of magnitude larger than the sheath voltage. Su and

Lam [6] have given theoretical solutions for spherical electrostatic

probes in a weakly ionized gas and a collision-dominated sheath° Lam

[7] has since presented a general theory for the incompressible flow of

a weakly ionized gas over biased absorbing surfaces° Mathematically_

the sheath and ambipolar regions were treated separately° The concept

of an electrical Reynolds numberwas introduced, and the extent of the

electric boundary layer in general discussed in terms thereof° In

particular_ he points out the possibility of an electrical boundary

layer extending further out than the viscous boundary layer, when the

wall does not have a _'floating potential ''_, i.e., the current at the wall

is not zero. Su [8] later studied a few theoretical aspects of the

electrical characteristics of compressible gas flows°

In the limit of weak ionization and a collision-dominated motion

of the charged particles in the sheath, Chung [9] solved the Couette

flow problem° Heused ideal gas thermodynamic and transport data_and also

assumedno ion®electron recombinations, but a wall catalytic to such

reactions. Later, Chung [10] included a few non=equilibrium effects in

viscous air shock layers and calculated someelectrostatic probe

characteristics o



Regarding temperature non-equilibrium effects, or the question of

energy non-equipartition in general, theoretical and someexperimental

work has been done mainly in the field of gas discharges. Here the

average energy of the electrons is in general far higher than that of interest

to us_ Landau [ii] first obtained expressions for the energy transfer

rate between electrons and ions for Maxwellian distributions and inverse

square law interaction. In an application of thermal and flow excitation

of a gas by a shock wave, Petschek and Byron [12] used Landau's results

and extended them to calculate electron-atom energy transfer rates in

shock-heated argon. Morse [13] has given an extensive theoretical treat-

ment of both energy and m6mentum exchange processes among species in

non-equipartition gases, using various interaction lawso In general,

for our purposes, the momentum exchange rate between electrons and the

heavy particles is very rapid. Dix [14] made a theoretical study of

energy transfer between parallel plates in partially ionized, non-

radiating, non-reacting hydrogen. He included magnetic fields and also

different electron and heavy particle temperatures° Among interesting

results, he found that the associated electric field, even in the

ambipolar regio_ was coupled to the electron motion. Camac and Kemp

[15] have reported an attempt to determine the heat transfer to a shock-

tube end-wall from a multi-temperature boundary layer. Assuming no

electron-ion recombinations, they presented briefly a solution in which

the electron temperature was much larger than the temperature of the

atoms and ions outside the sheath. They did not mention the fact

specifically, but their results show the possibility that the electron



temperature close to the unperturbed plasma is slightly less than the

heavy particle temperature. In a later section of the present analysis

similar features are shown to be also present for the present type Of

argon bo_u_dary layers.

Jaffrin [16] recently theoretically studied the structure of shock

waves in partially ionized argon. He used a three-fluid continuum model

and assumed frozen ionization° The results indicate a broad thermal

layer of elevated electron temperature ahead of the shock and a precursor°

The scope of the present paper is to determine theoretically the

structure of some simple boundary layers in partially ionized argon in

thermochemical equilibrium° Hence, we assume the electron-ion recombination

rate to be fast, at least in the region where the electrons and ions much

determine the boundary layer structure.

For simplicity, we choose to study the simplest boundary layers

such as the ionized convective Rayleigh boundary layer, the shock tube

end-wall boundary layer (which is a special case of the Rayleigh boundary

layer), and the shock-tube side-wall boundary layer° The latter boundary

layer is a boundary layer forming over an infinit% flat wall behind a

plane shock wave, which moves with uniform velocity along the wallo In

the case of the Rayleigh boundary layer_ we will determine the structure

of the interaction, when the directed kinetic energy of the gas is at

most of the same order of magnitude or smaller than the enthalpy of

the gas° For the side-wall boundary layer we are only interested in

experimentally obtainable cases in whic_ for a shock "wave penetrating

into gas at rest over the wall, the kinetic energy of the shock_heated



plasma is of the sameorder of magnitude as the gas enthalpy. These

treatments will be restricted to the case of no applied electric or

magnetic fields. The magnetic Reynolds numberwill be assumedto be

small as well. Therefor% only the induced electric field is taken

into account. In fact_ this field is of extreme importance to the

boundary layer problem3 primarily because it couples the diffusive motion

of the electrons and the ions and thereby affects strongly the transport

properties of the gas.

Somewhatsuperficially, we will neglect radiation in the present

treatment of the plasma boundary layer. However_it is clear that energy

will be transferred in the radiative mode_at least when the temperatures

are above lOj000°K. There maythen be present a more or less strong

coupling between the radiation field and the plasma flowo Weshallj

implicitly 3 assumethis coupling to be weak and neglect radiative losses

of energy. The radiation problem can then be treated separately from

the convective problem, and could be added to the treatment in a future

study.

Next3 it is assumedthat the meanfree paths of the species are

small everywhere in the interaction region comparedto the size of this

region. Weare then justified in using a continuum approach in the

mathematical description of the laminar boundary layer. In particular_

we mayuse equations of the Navier-Stokes type for the electron, ion and

atom fluids. Simple kinetic theory will_ in par% be used for the

calculations of the transport properties.

The considerations just discussed_ together with someothers, are

6



summarized in the following assumptions, which provide the framework of

the physical model:

lo The boundary layer flow is laminar and steady.

2. The gas is an argon plasma in thermochemical equilibrium,

i.e., the composition is given by a Saha type equation.

This condition does not have to be satisfied in the weakly

ionized region and in particular in the sheath, where the

gas is essentially frozen, ioe°, slow electron-ion

reactions o

3° In any part of the boundary layer, the electron temperature

may deviate only slightly from the temperature of the

ions and atoms°

4. The Reynolds number is large. The mean free paths of the

gas components are small compared to the boundary layer

thickness o

5_ The wall temperature is so low, that the gas is weakly

ionized at the interface°

6o The wall has a "floating" potential with respect to the

plasma° Hence there is no current to the wallo

7o There are no applied electromagnetic fields. The induced

magnetic field is neglected (the magnetic Reynolds number

is small )o

8o The Debye length of the unperturbed plasma is small

compared to the boundary layer thickness. The boundary

layer is then mostly quasi-neutral, ioeo, ni/n e _- lo

9° The thermal speed of the electrons is large compared



to the meanmassvelocities (small "electron Machnumber").

i0. The thermal diffusion is neglected.

iio Radiation is neglected. There is no radiation cooling

of the free stream plasma.

The sequenceof the treatment is as follows. The mathematical

formulation of the boundary layer flows is given in Section 2. The

governing equations are derived as momentsof the Boltzmann equations

for the electron_ ion, and atom fluids. The electrical characteristics

of the plasma boundary layer flow are discussed in the following section.

Most attention is here given to the ambipolar diffusion region. The

sheath is discussed briefly and the governing flow equations for the

charged particles presented. In Section 4 the thermogasdynamicproperties

of shock heated, partially ionized argon are reviewed° Selected results

of computer calculations of the shock heated plasma properties are pre-

sented. In the following section_ the transport properties of such a

plasma are calculated. For that purpose a simple 3 but powerful, mean

free path approach is used. The results are presented in somedetail3

since they are very interesting in nature and evidently not widely

reported in the literature. The boundary layer equations are solved

numerically in Section 6. The results are presented and discussed. In

Section 7, a two-temperature boundary layer is analyzed with a linearized

analytical model. The governing equations are solved, and the results

discussed. The report is concluded with a summaryand discussion of

results.



2. FORMULATIONOFTHEBOUNDARYLAYEREQUATIONS

a. Momentsof the Boltzmann Equation

function fs(Ws,r,t)

The present plasma boundary layer problem is complex in nature

due to the different, but coupled, behavior of the electron, ion, and

atom fluids. For purposes of clarity and well defined mathematical

formulation, we shall start from first principles. The formulation

presented herein is well suited only for collision-dominated plasma

boundary layers, where each fluid has a velocity distribution function

which is close to Maxwelliano In parallel to simpler cases, the continuum,

three-fluid conservation equations will be derived as momentsof the

Boltzmann equation. The overall conservation equations are then the

usual Navier-Stokes equations. In part 3 this section will therefore

be a review of knownmaterial [17].

Webegin by presenting the Boltzmann equation for the distribution

for any component"s" in the plasma

[ ]
s _ 8fs

-+ws fs fs =
r s w coll

S

(2.1)

Here w s is the particle velocity, r the space vector, qs the

electric charge of the particle, ms the mass, _ the electric field

strength, and [Sf/St]coll the collisional rate of change of the

distribution function in phase space and time (neglecting radiation)°

Moments of this equation can be found by multiplying it by a

function _s = _s(W_'Is),-s whichmay depend only uponthe particle

.



velocity w and the excited energy I of the particle. After inte-
s S

gration over the entire velocity-space_ we obtain the following well

known Boltzmann moment equation (Chapman and Cowling [18]).

(ns(_s>) + _ (ns(_s_s)) -
r

- -- n E " (V _s > =
m s s w_ coll

S

(2.2)

Here n is the particle number density, the bracket ( ) indicates a
S

value average in velocity space. The equations describing conservation

of mass, momentum_ and energy for the plasma components are obtained by

1 2

= = and _s = _ m w + I respectively.letting _s ms' _s msWs' s s s

After some rearrangements of terms they yield:

_Ps r_ps]
(mass) --_ + _' (p _ ) = (2.3)

r s s [--_Jcoll

(Pjs) + + o(momentum) _ V__ (Ps VoVo) V__ [Ps(_o_ + _)] +
r r -- --

(energy)

r --

Vo°ses _s o: (_ses)+ _. (_ ) = -os "_-
r

(2.4)

__) -->

:
r -- -- r

"_+_t+ Js [Pses ]coll
(2.5)

i0



Here ( ) indicates a tensor quantity 3 and (9) : (__) a tensor

multiplication. The mass density of specie "s" is Ps = nsms' the

-_ ), the meanmean value of the particle velocity of specie "s" _vs = (ws

mass velocity -_ the diffusion velocity _ _ _ and the
To' S = VS - Vo'

peculiar velocity _s = Ws-_- _vo. The kinetic stress tensor is

Ps = 0s(UsUs)' the charge density of the component _s = qsns (note

_ = O_ _e = -qlne; _i = qini), and the component current density

Js = nsqsVs" The convective energy flux vector -_qs' the kinetic

temperature Ts3 and the internal energy per unit mass e s for the

component "s" are defined as follows:

-_ 1 _ 2
qs = ns[_ ms(UsUs) + _s(Is )] (2@6)

i msTs = Y T (U) (2°7)

(Is)
e _ 3 kTs + _ (2.8)
s 2 m m

S S

In obtainingthese expressio_for the energy flux, we have made the

reasonable assumption that the particle velocity is not statistically

correlated with the excitation energy of the particle.

The momentum and energy equations for the electron fluid may be

simplified by the fact that the electron inertia and shear stresses are

small compared to corresponding quantities in the ion and atom fluids.

If the assumption is mad% that everywhere the average mass velocity v °

is _ch smaller than the average thermal speed of the electrons, the

convective terms can be neglected in the momentum equation. The equation

then becomes

ll



v Pe- (2.9)e _ [PeVe ]coll
r

Here, Pe is the pressure of the electron gas. In the subsequent

analysis we shall not be much concerned with this equation. For an equi-

librium plasma flow, i.e., when the composition follows a Saha relation,

the electron momentum equation is superfluous. However, it may be used

to determine the flux of momentum to the electrons due to collisions with

atoms and ions. The electron energy equation does not change as drasti-

cally in this limit of small "electron Mach number". It can be written

-9 --)

(Peee) + _" (PeeeVo) "= -V qe -
r r

•* • 2 + (2.1o)+ Je- Pe_" Vo [Peee]coll
r

The convective terms in the electron energy equation cannot in

general be neglected. In some situations, e.g., for steady viscous flow

adjacent to the a plane wall, the flow in the direction perpendicular to

the wall is diffusive in character, and the convective terms small. The

electron energy equation then degenerates into a form similar to Equation

(2.9), and describes the balance between the heat transfer in the electron

fluid itself, the Joule heating, and the collisional energy transfer to

the fluid. For the case of a plasma in thermochemical equilibrium, the

energy equation is superfluous. Howeve_ when the assumRtion of thermochem_al

equilibrium is in doubt_ the electron energy equation should be considered.

If kinetic theory data are available for the collisional energy transfer

12



rate between the fluids 3 the species energy equation_ and in particular

the electron energy equation, provide us with knowledge of the magnitude

of the temperature difference between the electron fluid and the atom

and ion fluids° In Section 73 a calculation of this kind is presented°

By summingthe individual species equations and making use of the

usual collisional invariants, we obtain the conservation equations for

the whole plasma as follows:

(mass) + V_ • (Pro) = 0 (2.11)
r

(momentum) _ (PVo) + V__ (p VoVo) : -_P + a_ (2.12)
r _ r

(energy) _ (pe) + _- (pe _o) = -V oq -
r r

- P: v v + Y. (2.13)
--* 0
r

Here p is the total mass density, _ the kinetic stress tensor,

the total charge density_ and _ the total current density. The

6O

kinetic stress tensor P includes the viscous stress tensor To By

making use of Poisson's equation, the momentum equation (2o12) could be

written more conveniently as

VoVo)=-v
r _ r

(2.12)

Here c is the permittivity of vacuum° In the present analysi_ the
0 6

o _ _ will be attributed to the induced
electromagnetic stress tensor _--
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electric field. It is easy to show, that if the Debye length is

much smaller than a plasma boundary layer thickness, the electromagnetic

stress stensor could be neglected in comparison to the kinetic stress

tensor. For the high density plasmas considered here, the Debye length

-6
is in general smaller than iO meters. We therefore, with confidence,

neglect the electromagnetic stress in the description of the overall

plasma flow. In the energy equation (2.13) the Joule heating term can

be neglected for similar reasons. Also in our particular plasma boundary

layer we will consider mainly the case when the current J is zero at the

wall.

Thus far_ we have included no expressions for the diffusion velocities,

the kinetic stress tensors, and the energy fluxes in the above equations.

In Section 5, we will relate these to properties of the thermogasdynamic

flow field, as is usually done when the velocity distributions are close

to Maxwellian. As mentioned earlier, we will primarily be treating the

case where the composition of the plasma is close to that for equilibrium_

i.e., the electron-ion reactions are considered to be fast. Initiall_ the

temperatures of the fluids are assumed to be equal. Therefore, it is

sufficient to solve only the conservation equations (2.11-2.13) for the

whole plasma, together with the equations of state and equilibrium

composition, i.e., a Saha equation. In addition, Poisson's equation has

to be considered. The electron continuity equation will be used only

in order to determine where in the plasma boundary layer the assumptions

of quasi-equilibrium are valid. Similarly 3 the electron energy equation

will be used to determine the region of the boundary layer in which the

electron temperature and heavy particle temperatures are almost equal.
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In practice, we will not have to study in detail the species momentum

equations since in our collision-dominated, high Reynolds number boundary

layer, the momentum exchange rate among the species is rapid enough to

cause small "slip".

At first sight, it might appear as if the electric field has been

eliminated in the hydrodynamic description. This is not correct. The

induced electric field will strongly determine the plasma boundary layer

structure° The mechanism is through the transport properties. In

particular the thermal conductivity of the plasma is strongly dependent

upon the electric field strength. Also the diffusional properties are

affected. In addition, the question of thermochemical equilibrium is

intimately coupled to the appearance of an induced electric field. The

field provides, e.g., an additional mechanism besides the collisional,

by which thermal energy can be transferred between the electron and the

heavy particle fluids.

b. The Rayleigh Boundary Layer Problem

The boundary layer equations for the Rayleigh boundary layer problem

are given next. Classically 3 this boundary layer problem is the incom-

pressible, viscous flow over an infinite flat plate, initially at rest,

but given an impulsively started motion in its own plane. It was first

discussed by Rayleigh [18]. The problem was studied subsequently by

several authors for the case of compressible, heat conducting flow.

Various degrees of approximations were employed. Howarth [19] calculated

the pressure on the wall due to the viscous dissipation, which in turn

induced velocities perpendicular to the wall, and also a shock wave.
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Van Dyke [20] improved the compressible solution by iterating upon the

boundary layer solution and the acoustic solution in the outer flow

field. He considered a thermally insulated plate and simple gas

properties. In the present analysis we shall study the boundary layer

solution in the first approximation only, but allow for a realistic

variation in the properties of the plasma.

Suppose that an infinite plate, as in Figure i, is initially at

rest in the plane y = O, but insulated from a uniform plasma at rest

which occupies the upper half plane y > O. At time t = 0, the plate

is given an impulsive motion with the velocity U w in its own plane.

Simultaneously the plasma is allowed to come into thermal contact

with the plate. The plate is kept at a constant temperature %, which

we assume is much lower than the temperature of the undisturbed plasma.

In addition, we assume no exchange of mass or electric charge between

the wall and the gas. As mentioned previously, the unperturbed plasma

is assumed not to change its properties with time, i.e., radiation cooling

is neglected. In this case, Equations (2.11-2.13) simplify to the

following well known boundary layer equations, which are valid at times

t, when v/_ << i (i.e., tU w p/_ >> i)

+ _ (_v)= o (2.14)

_u _u z _ (2.15)

_h _h _ i _ 1 8u (2.16)
y_ + v _y p_+-_ p xy_'yy
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Here, u and v are the velocity components in the x- and y-directions,

h the gas enthalpy per unit mass, _ the total energy flux in the y-

direction, and x the shear stress. The pressure of the plasma is
xy

constant. Notice that conditions are independent of the x-coordinate.

The appropriate boundary conditions are

t <0: t > O:

u(y,O) = 0 u(O,t) = U
_4

v(y,O): o v(O,t): o

h(y,O) = h h(O,t) = h
co W

(2.17)

By making a restricted Howarth's transformation (see eog°, [21])

_o y
y : m_ dy ; • : t (2.18)

Pco

the equation for conservation of mass is automatically satisfied. The

transformed momentum and energy equations become

_)y 1 b o bu( :_-:_ (__) (2.19)

8_ 1 _ _T _ i_ _ 2
(_)y _-__ (_P-- +- ( )= p_ _) p_ P_

(2,20)

bu bT
: (_) (_)Here we have introduced the relations _xy _ and q =-k ,

X X

where _ is the viscosity and k the total thermal conductivity°

Since the plasma flow is considered to be in equilibrium and the
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boundary conditions sufficiently clean, the boundary layer can be shown

to be of a self-similar nature. An appropriate nondimensional similarity

parameter is

Y (2.21)

oo

2

p_ Poo

where c is the equilibrium specific heat of the unperturbed plasma.
P_

It should be noted that we normalize with the total thermal conductivity

k , and not with the viscosity. The reason therefore is_ in part, that

the case of zero or small wall velocity is to be treated by these

equations as well_ and that the viscosity of the gas is then really not

important. Also 3 it is not convenient to normalize the similarity parameter

with viscosity because of the irregular behavior of the viscosity with

temperature in the region of partial ionization. With the above trans-

formation (2.21), the momentum and energy equations reduce to

i + a ( (2.22)2_ Pr d_ _ = 0

Pr 2
(2.23)

Note that

y 2 _d_ Y t
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Cp_
For convenience 3 we have introduced the local Prandtl number Pr = --i--

and the "free stream" Prandtl number Pr . It is important to note that these

quantities are based upon the equilibrium value of the specific heat.

In addition, we have made use of the relation (valid at constant pressure

only) dh/dN = c dT/dN. Equations (2.22, 2.23) are non-dimensionalized
P

further by introducing the following quantities for the velocity and

the enthalpy

h-h

* u * w (2.24)u = U- h = h----K-
_4 co _4

To summarize, the boundary layer equations and the boundary conditions

are then

i du

2_] proo d_]

1 dh

2_ Pr= d_

d _2_ du ) = 0 (2.25)
+ _ (p_ d_

2
*2

* u ___ dud (0_ i dh)+
+ d'_ D--_ Pr dg h poo_ (d-'_") = 0 (2°26)

_)_(1- h_

t>O:

_.o,t_= i

u (=,t) :0

h (O,t) = 0

C(_t) 1 (2°27)

In order to solve the above coupled system of ordinary non-linear parabolic

differential equations, we must have at our disposal detailed information

about the Prandtl number Pr(h3p) and the density-viscosity factor

0_(h,p) in the enthalpy region of interest. The constant parameters of

the problem are the Prandtl number at undisturbed conditions, Pr, and
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U2/(h (1-hw/h)), which appears as a factor in the viscous dissipation

term. The last parameter, in order to be more familiar, could be

expressed in terms of a Mach number_ which can be formed by the velocity

of the wall U and a speed of sound in the unperturbed plasma.

Finally, the equation governing the end-wall boundary layer will

be given. This is obtained from the equations for the Rayleigh problem

by simply putting u - 0 and U - O.
w

The momentum equation (2.25)

is therefore superfluous. There i_ on our approximation level, no

viscous dissipation present. After some rearrangement, the energy

equation (2.26) takes the simple_ parabolic form

C

2_ dh + d p k P_c dn ,/ = 0 (2.28)
oo p

As in the general Rayleigh problem, the boundary conditions for the non-

dimensional enthalpy are

t > O: h*(0,t) = 0 ; h (_,t) = i (2.29)

The energy equation (2.28) for the end-wall boundary layer has

been extensively studied in the literature 3 e.g., in connection with

ordinary diffusion problems.

The shock-tube end wall boundary layer is possibly the simplest

type of boundary layer which can be generated experimentally, and also

one of the simplest to study theoretically for ionized gases. The

boundary layer forms over the end wall of a shock tube in the reflected

region. Hence 3 in the experimental situatio_ the gas in the boundary

layer has been shock heated by passage through two shock waves. There
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will naturally be an induced flow field in the y-direction perpendicular

to the wall, due to the change in density of the gas in the boundary

layer. This is taken into account in what follows.

As for the Rayleigh case, in general we shall consider only the

boundary layer solution and neglect the outer, acoustic solution, which

here does not carry a shock wave.

Co The ShockTube Side-Wall Problem

The equations governing the laminar boundary layer flow behind a

plane shock wave propagating into a stationary gas over an infinite wall

is studied next° Wewill refer to this boundary layer as the shock tube

side-wall boundary layer, since it can be generated in the shock tube

along its side-walls. The problem is theoretically more complicated to

solve than the Rayleigh boundary layer. The reason for this is extra

non-linear terms appearing in the governing boundary layer equations°

Aspects of such flows have previously been studied by several authors,

mainly for the simpler case of ideal gases.

Hollyer [22] formulated the simple problem and gave a solution.

Further solutions have been given by, e.go, Mirels [23] and Bershader

and Allport [24], who also carried out someexperiments. Becket [25]

has since given an extensive review of the shock tube boundary layer

problem for low temperature gases.

Weconveniently study the side-wall boundary layer in a coordinate

system, which moveswith the shock way%as is shownin Fig. 2. The

shock wave is assumedto be not attenuating. Therefore_ in this

reference system, the flow is time independent. Cold, non-ionized gas
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of homogeneousconditions enters the plane shock wave with a velocity

Us, which equals the wall velocity Uw in our reference system. Behind

the shock wave the gas velocity is U2 in the undisturbed region. In

practice, for ionizing shock waves, there will be a finite region of

relaxation to equilibrium conditions behind the shock wave. Weshall

neglect this, and assumethe conditions of the plasma to be uniform

behind the shock wave. The only possible exception is a variation in

a small induced velocity perpendicular to the wall_ due to the boundary

layer displacement thickness.

In the shock-fixed coordinate system the time-independent boundary

layer equations are (with symbols analagous to those used previously)

(_ss) _ (0u)+ _Y (0v)= o (2.3o)

8u 8u _ 1 8 (2.31)
(momentum) u _-_ + v Uy P _ _xy

;h _h 1 + xy _u (2.52)
(energy) u _-_ + v _ = - _ Y P

with the boundary conditions

x>O:

-_(x,o) = _;

h(x,O): h
W

v(x,o): o U(X,OO) = U 2

h(x,_) -- h

A great number of similarities could be drawn to the classical

compressible semi-infinite "flat plate" problem. The only difference is

in fact the boundary condition at the wall, u(x,O) = Uw, which for the

"flat plate" problem becomes u(x_O) = O. Earlier, it was pointed out,
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e.g.# in the work by Bershader and Allport [24], that the shock tube

side-_all boundary layer problem is more general than the "flat plate",

i.e., the Blasius problem. The reason is the additional degree of freedom

given by the possible variation in wall velocity Uw (in the shock-fixed

reference system).

The equation for conservation of mass (2.30) may be eliminated by

introducing, instead of y, a stream-function _, defined as

_0 y
= D_ u dy (2.33)

P_

The velocity components are then

U =._ V =

The substantial derivative along a streamline becomes

D 3 3
=_u + v = (2°35)Dt

With the present boundary conditions, the equations for conservation of

momentumand energy (2.31, 2°32) can be brought into a self-similar form.

The similarity variable may be conveniently defined for this case as

= _ (2.36)

2 U2x
Cpp_

where the distance x is measured from the shock wave. It should be

note_ that we have normalized with the velocity U2, and not with the
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velocity difference (Uw-U2)° The reason for this is not obvious at this

point 3 but the equations with this choice of reference velocity take a

more convenient form.

If_ in addition, we introduce the following dimensionless quantities

. u-U 2 . h-h
u = --_ ] h =____w (2.37)

Uw-U 2 h -hW

U 2
c : _ (2.38)

Uw-U 2

where C is a constant parameter_ less than unity, the boundary layer

momentum and energy equations become

2_ i du ( p_ (uc+C) duPr d_ + d_ _ _ d-_-) = 0 (2.39)

i dh

2_ Pr d_
d __/ i (_gt_)dh+ d-_-)+(poo_ooPr

+ p_ (_) (L-_2)2 du 2
p_---] h (a-y-)

<(1-
O0

= o (2.40)

The boundary conditions are

x>O:

_*(x,o): i

u (x,_): 0

i-, (x,o) =o

h*(x,_) = i

(2.41)

These equations are quite general. In fact, they also govern the

Rayleigh (and end-wall) boundary layer flow_ as well as the compressible

"flat plate" boun.iary !_.ycr flow, as was pointed out [n:-eviously. B;y
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giving the parameter C the value C = -i, joe. 3 Uw = O, we obtain

the "flat plate" boundary layer equations. The dimensionless velocity

parameter then degenerates to u = -(u-U2)/U 2. Observe that the

boundary conditions (2.41) are unchanged.

If C -_ _3 the equations for the Rayleigh problem are obtained

with unchanged boundary conditions. This corresponds to the case when

Uw/U 2 -_ i, i.e., such as obtained by a weak shock. We then have

U : U_wo
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3. ELECTRICAL CHARACTERISTICS OF A PAETIALLY IONIZED BOUNDARY LAYER

a. The Induced Electric Field

In e partially ionized gas containing regions with gradients in

composition, temperature, etc. which cause diffusion 3 the electrons, due

to their larger thermal speed, tend to diffuse at a faster rate than the

heavier ions° In such a region_ there will therefore, in general_ be a

tendency toward an excess of ions if there are no applied electromagnetic

fields. An induced electric field will then be present° This field

will slow down the faster diffusing electrons and accelerate the diffusion

of the ions° For the case of a weakly ionized gas and simple, ideal

gas properties it is well known (e.g., Allis [26]_ that in the limit of

strong coupling of the electron and ion motion_ ioeo, the ambipolar

diffusion limit, the effective common diffusion-coefficient is twice the

free diffusion-coefficient for the ions alone. In this limit the ratio

of number density electrons and ions is close to unity. Ambipolar

diffusion has been studied in simple limits of constant gas properties

by, for example, Allis and Rose [27], and Frost [28].

Strong coupling between the diffusive motion of the electrons and

the ions 3 ambipolar diffusion, is possible only when the Debye length

is much smaller than a characteristic length for the diffusion region.

The Debye length is defined in MESA units_ as

£D = _ = 69.0 [_--]

L neq e J e

Here, c is the permittivity of vacuum, k
O

(meters) (3°1)

the Boltzmann constant, n
e
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the electron number density, and qe the charge of the electron. In

the present plasma boundary layer problem_ the Debye length of the

unperturbed_ shock heated plasma is considerably smaller than the

thickness of the thermal boundary layer, which is the characteristic

length for the associated diffusion problem in the boundary layer.

Therefore, the conditions will be close to ambipolar at least in the

outer part of the boundary layers. However_ closer to the wall, which

we assume is "cold", the number density of free electrons ne, will

decrease rapidl_ if we assume a boundary layer in thermo-chemical equilib-

rium. Then the Debye length will increase. Specifically, at some

distance y from this wall, the value of the local Debye length will be

equal to y. Still closer to the wall, the Debye length will increase

further and be larger than the corresponding distance to the wall.

Ambipolar conditions presumably will not be present. Here the diffusive

motion of the electron and the ion fluids are weakly coupled. The total

number fluxes of electrons and ions, however, are largely determined by

the conditions in the ambipolar regio_ if the reaction rates are slow.

We may speak here of a sheath of considerable relative charge separation.

The diffusion is almost of the t_e "free". The sheath contains an

excess of ions, for the case that the net current to the wall is zero.

In what follows we shall derive some diffusional properties,

including the strength of the induced electric field in the ambipolar,

transition_ and sheath regions of the ionized boundary layer. The net

current to the wall is assumed to be zero which is a relevant condition,

e.go_ in a shock tube experiment. The diffusive flow is steady, and

_<_s:[-one d.J:_ensional., i.co, perpendicu]a_ tc the wa!i_ a_d ;:u_ _e_.'_._,.
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From the continuity equation (2.3) for the electron and ion fluids,

we find 3 upon elimination of the collision-term, the following simple

relation

(n/e) = _° (ni_ i) (3.2)
r r

-@

Her R V e and V i are the electron and ion diffusional velocities° This

relation holds for nonequilibrium situations as well. Assuming that

the total current density is zero_ we find the following simple

expression:

= F, (3°3)
e l

Here, _ = _ n
e e e

flux vector°

When the gas pressure p

is the electron diffusive flux vector and P. the ion
1

is constant, as in our plasma boundary

layer, and thermal diffusion can be neglected, the following expressions

can easily be obtained for the diffusion velocities of the components

in the partially ionized gas

2 3

_s = nsP j j sj j
(s = a,e,i) (3°4)

n m

: ___ (naln) + a_____a2 qi(ni-ne)a ' pp
U.,V

n.m

(ni/n) I a 2 )
_i = 8_ --_- qi (n-ni

n m

_e = 8_8 (ne/n) + P--_-ea 2 qi(n-ne)

(3°5)
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Here the usual notation in kinetic theory (eog., [17]) is used° Hence,

s is a driving force for diffusion, Dsj the multicomponent diffusion

= + n + ni) , m thecoefficient, n the total number density (n na e a

atom mass, and _ the strength of the electric field°

The electric field strength can be calculated if we substitute the

expressions (3.5) for the driving forces into equations (3°3, 3.4). The

somewhat complicated result is

neqiE

n i m n
__ (T) + e

(Dea-Dia-Dei) _ (Dea-Dia + m a Die) _ (-n-)

nkT n. n-n. m
e

1 l ) - (Dea-Dia + m Die )n n-n (Dea-Dia-Dei
e e a

(}.6)

If, in the ambipolar limit, which means ni/n e _- i, we observe

the relations between multicomponent diffusion coefficients and the

binary diffusion coefficients applied to a three-component gas mixture,

our plasma, and also make use of the fact that the electron mass m
e

is very small compared to the ion and atom mass m , the expression
a

for the electric field strength becomes extremely simple:

qi_ n
A n _ (_) (3.7)

kT ne _

With this expression we have an estimate of the electric field necessary

to maintain ambipolar diffusion. Hqwever, nothing can be concluded from

this about the extent of the ambipolar region.

The ambipolar diffusion velocities may next be evaluated. By

introducing the calculated ambipolar electric field strength into
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n/ne n
- (e)

or

n.

a n 1
a

(3.8)

At this point it should be recalled that the multicomponent diffusion

_i where _. is the binary ion-atomcoefficient is Dia & a ' la

diffusion coefficient° In accordance with simple kinetic theory, we have

m. +m 1/2

_i l 3 _ I a kT) 1 (3-9)a = n_ (_m.T
i a Qia

Here, Qia is an effective hard-sphere ion-atom collision cross-sectiono

From the expression (3.8) can be recognized the familiar result,

that it is the ion-atom diffusion coefficient which determines the ambi-

polar diffusive flux of charged particles, and that the electron and ion

diffusion velocities are equal.

A very simple, but useful expression for the electric potential

difference between two arbitrary points (1) and (2) in the ambipolar

region of a partially ionized gas is derived next° Introducing the degree

of ionization _, which is still a useful concept for a quasi-neutral

gas, the potential difference upon integration of equation (3.7) becomes

i /I 2 kT iv2- Vl: - _ _ : _ _-Ta7d_ (3olO)

This integral can be evaluated easily in practice, since there exists

for an equilibrium ionized gas at constant pressur% a unique relation
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between the temperature and the degree of ionization 5. The results of

such integrations are shownin Fig. _ for argon in thermal equilibrium.

Wenote that the potential differences across the ambipolar region of

the boundary layers can be of the order i0 volts, when the average plasma

kinetic energy is of the order of only 1 eV. The fact that there is

a large potential difference associated with the ambipolar diffusion

region has not been sufficiently anticipated in the literature. The

unexplained large potential difference across the boundary layer in [5],

could be attributed to the voltage difference across the ambipolar

region, which was not considered. In the plasma boundary layers con-

sidered herepthe sheath potential may typically amount only to 0.5 volt,

and is hence small compared to the ambipolar potential difference.

b. Charge Separation and the Sheath

In the previous analysis of the ambipolar region we assumed quasi-

neutrality, i.e., the ratio of the ion and electron densities is close

to unit_ ne/n i io We shall study this assumption in some more detail

and determine the charge separation exactly. Furthermore, it will be

shown how the ambipolar conditions break down in a transition region to

the sheath, in which more or less free collision-dominated diffusion

prevails.

Consider now the space charge distribution. It may be determined

with the aid of the Poisson equation,

(3.11)V " E=--
6

r 0
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_nserting the results for the induced electric field, equation (3.7),

we may describe the charge separation in the ambipolar region by the

relation

qi (ni-ne )

_6
O

n

- _ (kT n _ (_)) (3o12)
_ _i ne _

Alternatively, introduction of a Debye-length,

yields the expression

ID, from equation (3ol)

no

_-l _ 1 "- _2D2 T1 8_8 (T 8_8 (In ne/n)) (3.13)
e

From this relation it can be seen 3 that the relative charge separation

(ni/n e - l) is largely determined by.the ratio of the Deb_e length and y_

ID/y , where y is the distance from the wallo Ambipolar conditions,

i.eo 3 ni/n e - 1 << l, then prevail approximately only where the Debye

length is larger than y,_ i.e., where n is very small. Adjacent to the
e

wall itself, the Debye length ID is considerably larger than the

distance y to the wall, and the ambipolar conditions are no longer valid°

Figure 4 shows the Debye length for equilibrium ionized argon as a function

of temperature and pressure. At thermodynamic conditions corresponding

to the boundary layer free stream plasma, the Debye length is typically

of the order lO -8 < iD < l0 -7 meter. It rapidly increases with

decreasing temperature. At 3000°Ks for example, ID is as large as 2 mmo

Presently 3 our interest is mainly with boundary layer thicknesses of the

order 1 mm. Therefore, we may conclude that for the equilibrium argon

plasma, the ambipolar region will roughly exist above 4000°Ko At lower
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temperatures a transition to the sheath with nearly "free" diffusion

takes place rapidly° If the gas _ as not in chemical equilibrium, the

number density of charged particles should be higher near the wall.

Therefore, the sheath becomes considerably thinner than for the equilibrium

case. As will be shown later for the argon plasma boundary layer, the

equilibrium assumption is not at all valid at the temperatures and number

densities typical for the sheath, i.e., T < 4000°K. Further analysis

of an equilibrium argon sheath is therefore not of practical interest.

In the sheath and the transition region the gas will be only

weakly ionized. If, instead of equilibrium, we consider a case with very

slow electron-ion reaction races (frozen flow), and equal temperatures

of the electron, ion, and atom fluids, the following set of flux equations

govern the collision-dominated, stead_ diffusive motion of the electron

and ion fluids:

P° = P = constant = P (3.14)
1 e

r 1 d  'qi (3.15)
n D = - (ne/n) kT
e ea

P i d Eqi (3.16)

.D = - _ _yy (ni/n) + k--Tnm ia

Her_ Dea and Dia are the electron-atom and ion-atom multicomponent

diffusion coefficients, y the coordinate perpendicular to the (plane)

wall, and E the electric field strength in the y-direction. The

electron and ion fluxes in the y-direction are equal since there is

neither any net current nor electron-ion reactions. Before proceeding,

it should be mentioned that the assumption of equal temperatures is
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unrealistic 3 at least for an argon high density plasma. At typical

shock tube conditions the elastic collisional energy transfer rate between

the electrons and the heavy particles is too small to maintain thermal

equilibrium. In partythis is due to the Ramsauer effect, which makes

the elastic electron-atom collision cross-section very small. The

Ramsauerminimum occurs at an energy of about 0.3 eV.

For referenc%we shall develop the general diffusion equations

(3.15_ 3.16) one step further. It is found convenient to normalize them

with appropriate parameters somewhere in the ambipolar region I at a

distance Ys from the wall 3 Where is valid Ini/n e - 1 1 << 1. With new

non-dimensionalized variables defined as

ne = ne/nes _ ni = ni/nes_

J
= Y/Ys

(3.1v)

the equations (3.15, 3.16) governing the diffusive flow outside and

inside the sheath_ take the dimensionless form

electrons: d (_n ne/n) I_Ys Ys i s o__ =_ _ i-e]y
dy neD 2 qiYsne Yea _D ne s

(3.18)

2

d _ PYs Ys i r Ees o f Ys ..... ]

ions: -- (_n ni/n) = n.D. + --_ -- [ J_ Qni-neJdY J
dy i la _D ne qiYsne Y

s

(3.19)

The electric field strength E has been eliminated with the help of

the Poisson equation (3.11). The parameter E s is the electric field

strength at the reference point in the ambipolar region. It cannot
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be neglected, but is essential to the sheath solution. In fact, for

the partially ionized boundary layers considered here, E will be quite
s

large and possibly even larger than the electric field strength inside

the sheath.

The boundary conditions for equations (3.18, 3.19) are the

following:

~ (7 i)n = = i
e

ni( _ = i) = 1

e }
ni(Y = O) - 0

(3.20)

It is clearly seen from the diffusion equations again how strong

coupling in the diffusive motion of the electron and ion fluids comes

about when the Debye length iD becomes small in comparison to Ys;

conversely, there is weak coupling and "free" diffusion when _D is

larger than Ys"

It should be pointed out, that although the gas is weakly ionized

the electron-ion collisions are still important for the sheath structure,

e.g., for ionized noble gases with low Ramsauer minima in the elastic

electron-atom cross-section. The multicomponent diffusion-coefficient,

D in equation (3.18), should in this case, not be replaced by the
ea

binary electron-atom diffusion-coefficient, _ea' but rather by the

expression

n. + n

•_ l a _ea
Dea Qei

--n. +n
Qea z a

(3.2l)

or, in the weakly ionized limit, by
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• 13 _k_)1/2 1
ea Qei ni e Qea

i +

Qea n

Her% the quantity (Qei ni) is not small compared to unity even though

Qea n

ni/n << i. At this point_ we shall not go further and solve these

faily complex diffusive flux equations. Such a calculation and further

discussion of the sheath structure is left to a forthcoming report. It

should then be interesting to allaw for different temperatures of the

electron and ion-atom fluids.
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4. THERMOGASDYNAMIC PROPERTIES OF SHOCK-HEATED_ PARTIALLY IONIZED ARGON

a. Equilibrium Thermodynamiq s

The boundary layer equations are to be solved for an equilibrium

argon plasma. Therefore we review briefly the appropriate thermo-

gasdynamic properties in this section. Firstly, the sizple thermodynamic

properties will be discussed 3 and thereafter the thermogasdynamic

properties behind a normal, ionizing shock wave will be displayed.

The partition functions and related thermodynamic properties of

argon plasmas have been analyzed by several authors 3 e.g., Drellishak,

Knopp_ and Cambel [29]_ and reviewed by Cambel_ Duclos_ and Anderson

[30]. The previous authors calculated the partition functions for an

argon plasma including the first four ions_ using both observed and

predicted energy levels of the atoms and ions. The usually divergent

set of partition functions was terminated by use of a Debye cut-off. The

lowering of the ionization potential due to energy perturbations arising

from electrostatic interactions with other charged particles was con-

sidered as well.

For present purposes we are interested mainly in plasma temperatures

below 15_000-20_000°K at pressures of the order of magnitude of

0.i _ p _ i0 atm. The argon plasma is then essentially only singly

ionized. If we also neglect the lowering of the ionization potential,

which typically will amount only to a fraction of one electron volt for

argon_ the equilibrium composition and thermodynamic properties are

particularly simple to evaluate. The equilibrium cozposition neglecting
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the induced electric field, is given by the relation

neni _ mekTf/2 2 Ze.lec" I I
1

na = _- h_ ] zele c exp(- _-_)
a

(4.1)

Here Zelec°, is the electronic partition function for the singly-charged
1

ion, zeleC°a the electronic partition function for the atom, I 1 the

first ionization potential, and h the Planck's constant. The factor

2 in front of the ion electronic partition function stands for the two

possible orientations of spin of the free electron, and represents its

statistical weight. For argon the ratio of the ion-atom electronic

partition functions is approximately

ze lec-
I

zeleco
a

•_ 4 + 2 exp(-RO62/T) (4°2)
i

Assuming that the gas is quasi-neutral, which is true, e.g., in the

ambipolar region of the plasma boundary layer, it is meaningful to use

the degree of ionization _, defined as

n

(_ = e (4°3)
n + n
a e

With the aid of the perfect gas law for each component, i. eo, Pe = ne kT

for the electrons, etc., the equilibrium relation (4.1) reduces to the

familiar Saha type equation

(kT) 5/2 8 + 4 exp(-2062/T) exp(-182900/T) (4°4)
p 1
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The first ionization potential for argon , I 1 = 15.7 eV, has been

inserted, i.e., ll/k = 182,900°K.

The thermodynamicproperties are determined easily from the

partition functions. If we neglect the contribution of electronic excited

states to the enthalpy h of the plasma, we have

a - k__m[_(I+_)T+ _ T1/k] (4.5)
a

The electronic excited states would affect this value at most 1-2% when

the temperature is below 15,000°K. For our purposes, expression (4.5)

could possibly be used even up to temperatures of 20,O00°K. The

equilibrium specific heat Cp3 which, e.g._ is of interest in the

evaluation of the Prandtl number in a subsequent section, then becomes

c --(_) "--m--[ (l+_)+ ( T+i-)( ) ] (4,6)
P p a P

The derivative (_/bT)p could be calculated with the he;lp of equation

(4.4),

b. Thermogasdynamic Properties

The equilibrium conditions behind a strong_ ionizing, plane shock

wave could be calculated from the usual shock relations neglecting

radiation. Thermodynamic data for shock heated plasmas have not been

reported extensively in the literature, although the calculations are

quite simple to perform with the help of a digital computer. Limited

data for the noble gases have however been reported by, for example,
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Niblett and Kenny [31]. Therefore, for reference we shall briefly give

here calculated thermogasdynamicproperties of a shock heated argon

plasma as a function of shock speed. The primary interest is for initial

pressures of 1 < Pl < 20 mmHg, and shock velocities of 3000 < Us < 7000

m/sec, since these conditions partly are within a possible experimental

range.

The shock relations relate the conditions in front of and behind

the shock wave. They are

pl s=  2u2 l

i U 2 = h2 + I 2hl+_ s _U2

(4°7)

where subscript "i'" refers to the conditions in front of the shock wave_

and subscript "2" to conditions behind the shock wave in a coordinate

system moving with the shock wave. These equations were solved simul-

taneously with the help of a digital computer° The plasma considered

was an equilibrium argon plasma. Initially, the gas was non-ionized with

a temperature of T1 = 298_Ko The numerical method of solution used was

an iterative technique in the density behind the shock wave, D2 , which

is the least sensitive to a variation in shock velocity of the thermo-

dynamic variables behind the shock wave. Typically)a relative accuracy

of 10 -4 in the density D2 was obtained after only four iterations

from a roughly guessed value°

The results of the numerical calculations are shown in Figures

5-8. Typically 3 number density of free electrons behind the shock wave
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is in the range 1022 < n < 1024 -3m The ranges of other variables
e

are the degree of ionization 0.i < _ < 0.3_ the temperature

12_000 < T < 14_000°K_ the density ratio 6 < p2/p I < i0.

Similar results can be easily obtained for the properties behind

the reflected shock wave at the end-wall of a shock tube. Such data are

of interest to the end-wall boundary layer problem. We shall_ howeverj

not report the results of such calculations here.
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5. ARGONTRANSPORTPROPERTIES

a. General

In order to solve the plasma boundary layer equations, we require

the transport properties for argon in the complete range from an unionized

to a strongly or completely ionized state. In particular, we are interested

in ambipolar diffusion coefficients, the viscosity, and the total thermal

conductivity° It w_ald3 in principle_ be desirable to know the transport

properties for a reacting gas_ including cases where the electron tempera-
m

ture is different from the temperature of the ions and atoms° Such

information is not available at the present state of the art. However,

here it is quite feasibl_ to neglect the contribution from inelastic

and reacting collisions on the overall transport properties_ This is possible

because elastic collisions are much more frequent than inelastic ones°

Indeed_ the possibility of energy nonequipartition, i.e., different

species temperatures 3 does not seem to pose an insoluble problem.

For our range of thermogasdynamic conditions 3 energy nonequipartition

seems to occur mainly in regions close to the wall, where the degree of

ionization is low. Atom transport properties could then be used, e.go_

for the thermal conductivity and viscosity, to calculate the boundary

layer, overall structure. 0nly the diffusion coefficients are affected

significantly by such a nonequilibrium effec% and the electrical

characteristics of the boundary layer hereby changed.

The transport properties for a quasi-equilibrium plasma with

particle velocity distribution functions close to Maxwellian_ could in

principle be calculated with the usual Chapman®Enskog procedure [32].
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Such calculations have recently been made for partially ionized gases,

eogo, by Sherman [33] and De Voto [34] in various degrees of approximations.

The limited amount of information carried in these and other references

renders application to the present boundary layer problem somewhat

difficult° We shall, therefore, estimate the necessary transport pro-

perties of partially ionized argon by use of simple kinetic theory° By

doing so we will obtain simplicity and perhaps a clearer understanding

of the relative importance of the various type of collisions in the

gas. In this approach the transport coefficients are calculated from

effective hard-sphere collision cross-sections Qij for collisions

between type i particles and type j particles° The total transport

coefficients are constructed as the sum of individual contributions from

the electrons_ ions and atoms_ e.g°j with mean free paths estimated by

considering all type of collisions°

bo Diffusion

The diffusion properties were briefly discussed in Section 3 in

connection with the electrical properties of the plasma boundary layer°

It was then found that, neglecting the current and the thermal diffusion,

the common ambipolar diffusion velocity of the electron and ion fluids

was given by

% & _i _ -2 _. i __ _n (5.1)
l_ne--/_ ( ne/n )

Here _. is the ion-atom binary diffusion coefficient. The effect of
la

electron-ion collisions is negligible due to the small electron mass

5O



and inertia.

from simple kinetic theory, be expressed as

a n m -
a Qia

The binary ion-atom diffusion coefficient can therefore,

(5.2)

where Qia is an effective, average hard-sphere collision cross-section

for ion-atom collisions. It will depend upon the temperature of the ion

and atom fluids. The contribution to Qia from elastic collisions is

quite small compared to that from charge transfer collisions° Typically_

the elastic contribution only amounts to 30 _2 and is quite insensitive

to temperature_elative speed). For simplicity _e shall here use a

constant value, Qia = 30 _2 for this average elastic hard-sphere

collision cross-section.

The contribution to the effective hard-sphere cross-section Qia

from the symmetric resonant charge transfer collisions is the dominant

contribution. It amounts to about lO0 _2 at 15,000°K_ and becomes

even larger at lower temperatures. Much theoretical work has been

published, eog., Dalgarno [35]j on symmetric resonant charge transfer

processes. However 3 for low relative velocities, whichare of interest

for our 1 eV plasma, the available amount of information is very limited°

In this energy regime the problem of charge exchange is theoretically

more difficult to treat, since only a rigorous wave-mechanical treatment

may be used. Few _xperiments have been performed at low energies. Here

we will employ a charge exchange cross-section having the form

tot.i/2

Qtr ) = -kI _n g + k 2 (5°3)

51



where g is the relative speed and kI and k2 constants° For argon

we assign values to these constants as in [34]. Integration over

Maxwellian atom and ion velocity distribution functions yields the

appropriate contribution from the symmetric resonant charge transfer to

Qia" The results are shownin Fig. 9- For reference this figure also

shows other important effective hard sphere cross-sections used in the

present analysis.

In terms of the degree of ionization 5, equation (5ol) for the

ambipolar diffusion velocity reduces to the simple form

- 2 ia

It is therefore convenient to define the ambipolar diffusion coefficient

as Dam b = 2 _ia" This coefficient has been calculated at various

pressures and temperatures for the equilibrium argon plasma_ using the

previously described collisional cross-section data. Figure i0 shows the

results of the calculation.

c. Viscosity

The viscosity of partially ionized argon_in analogy with the

results from simple kinetic theory for a pure ga_ is here calculated as

5_ 3
= _-_ _. pj _jUj

J

(5.5)

where Dj is the density of component "j_" Uj. the mean thermal speed

Uj = (8 kT/(_ mj)l/2 and lj an appropriate mean free path. Specifically,

by the mean free path we mean here the average distance travelled between
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successive collisions by a particle of kind "j_' in which the momentum

vector is changedby a considerable amount. Due to the small mass and

momentumof the electrons 3 we will make the assumption that electrons

makeno contribution to the viscosity 3 although the collision frequency

with heavy particles is large. The meanfree paths for the atoms and

the ions, neglecting collisions with the electrons 3 become

1

a _ (naQaa + niQai)

_- 1
I _ (niQii + naQai)

Here Qai is an effective hard-sphere collision momentum exchange

cross-section for the atom-ion collisions, and Qii an effective hard-

sphere cross-section for the ion-ion (Coulomb-) collisions° The

viscosity of the ionized gas is then

Qai
i+

i-(_ Qaag_
i +--

1-(_ Qai _ Qii
-- +

5x m U i-(_
a a Q_ Qaa (5o8)

= 32 Qaa _ Qai
l+

1-(_ Qaa

Note that in deriving this expression we have assumed that the temperatures

of the atoms and ions are equal, ioe., their mean thermal speeds are

equal° It should be pointed out, that the pure atom viscosity is

mU

_ a a (5°9)
_at oms 32 Qaa

53



Amdur and Mason [36] have made a theoretical study of the viscosity of

pure argon, neglecting excitation, with force laws calculated from beam

experiments. Using their data_ the appropriate hard-sphere collision

cross-section for the atom-atom collisions Qaa can be calculated. The

result is _

-0.26

Qaa "= 17(i0_) <12) (5.10)

Hence, the value of cross-section is about 15 12 for temperatures of

interest here. Note, with the help of equation (5.9), that the pure

T0"76
atom viscosity depends upon temperature as _atoms

The effective hard-sphere ion-ion collision cross-section Qii

to be used for calculation of the viscosity in equation (5.8) is a

Coulomb scattering cross-section. We apply a cut-off in the force-law

at the Debye length from the nucleus (Rose and Clark [37]). The result

is

2

qe _n A
Qii _ _ 387 2n A

4_ 2 (SkT)2 (T/104)2 (12) (5.11)
o

where_ if A >> i

12_(_okT/_)3/2 T3/2
A = nl/2 _ i.24x lO7 _ (5.12)

e e

This cross-section is quite large_ of the order 103-10 4 _2 as is

shown in Fig. 9-

With the above cross-section data, the viscosity of partially ionized
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argon was calculated from equation (5.8). The results are sho_n in

Fig. ll. It is very interesting that the viscosity shows a maximum at

temperatures around T = 103OO0°K for constant pressure. The degree

of ionization is then quite small 3 in fact 3 of the order _ = 10 -2.

The maximum is attributed to the large charge exchange cross-section

which becomes increasingly important to the viscosity when the ion number

density increases. The viscosity decreases rapidly with temperature

above 103000°K and approaches above 15#O00°K the small ion viscosity,

as calculated, e.g. 3 by Braginskii E381.

We demonstrate in part the above statements in the limit of small de-

gree of ionization, G _( i,i by linearizing equation (5.8). One then

finds the following viscosity formula

Qai

_ l: _ - _atoms (1 - _ _ + --- ) (5.13)

Hence, the charge exchange collision cross-section causes _the_viscosity

maximum.

Of particular interest to the plasma boundary layer problem is the

variation of the density-viscosity factor p_ at constant pressure.

This parameter appeared in boundary layer equations (2.393 2.40). In

classical treatments of boundary layers E21S, the parameter D_ is

often assumed to be constant across the boundary layer 3 i.e., the viscosity

is proportional to temperature _ _ T, _hich makes the boundary layer

equations particularly simple to solve. For the present boundary layer

analysis 3 this assumption is not possible. Typically the variation .

in the density-viscosity product D_ will for the argon plasma span one
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or two orders of magnitude.° Partly, the reason for this is the small

plasma viscosity. As an example, Fig. 12 shows the variation in the

density-viscosity factor P_ with temperature and pressure for our

ionized gas.

d. Thermal Conductivity

-@

The total convective energy flux vector q consists of species

flux vectors qs_ which are defined by equation (2.6)°

thermal equilibrium among the fluids_ the energy flux q

In the case of

can be written

q = pjhj , 8._
(5.z4)

Here k is the usual thermal conductivity_ h. the species enthalpy
J

per unit mass_ and _. the diffusion velocity of fluid "j" We make
J

the assumptions of ambipolar diffusion and negligible thermal diffusion,

which in fact is quite a good assumption here ([34])o The total con-

vective heat flux vector then becomes

-_ 8T 5 2n D.
q =-k--_ -( kT + ii ) _la _ ne/n

We have, as in Section 4_ neglected a small contribution to the enthalpy

from electronically excited states of the atoms and ions.

When the pressure is constant,,as for the boundary layers, and the

flow is in thermo-chemical equilibrium_ there exists a unique relation

between the gradient 8 neP --, appearing in equation (5.15)3 and the
8_ n

temperature gradient 8T . If we neglect the slow variation with
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temperature of the ratio of the electronic partition functions (4.2) is

found

n Ii _T
(! e . _ I-(Z i [5 + __
_ _-)p=const 2 l+_ T k-T] 8V

equilibrium

(5.16)

With the help of this relation, the total convective heat flux vector

could be written

q = - kto t _ (5.17)

where

_kto t - k + (_(i-(_) I1 22 Damb T_ [5+ _] (5.18)

Hence# the total energy flux vector is related to a temperature gradient,

thermodynamic variables and transport properties. The second term in

equation (3.18) will be referred to as the "reactive conductivity". The

terminology is somewhat misleadin_but is commonly used for non-ionized

gases° The reactive conductivity is of extreme importance when the gas

is partially ionized.

Next, the thermal conductivity k will be calculated° Here we

will use a simple mixture rule first suggested by Fay [39] for a partially

ionized gas. The thermal conductivity then reads

where

3 x.Tt.

: Z 3 j J (5.19)
i _x.G

i i ji

G = Gji = (m.------_7-_m.) (5°20)
-- j i Qjj
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Here k. is the thermal conductivity of the component "j", x. the
J 0

number density fraction# mi the particle mass_ and Qji an effective

hard-sphere cross-section for collisional energy transfer. The tensor

G has been introduced to modify the collisional mean free paths of the

pure components# and to allow for different persistence ratios in the

collisions between particles with different masses. When the equations

(5o19, 5.20) are applied to the mixture of electrons_ atoms and singly

ionized ions 3 the expressions can be somewhat simplified by the fact

that the electron mass is small compared to the atom and ion masses. In

terms of G, the degree of ionization# and self-explanatory cross-

sections 3 the conductivity then becomes

k k k

k _ a + i + e (5.21)

i + i-_ Qaa (_ Qii Qee

Following Fay [39], we adjust the values of the ion thermal conductivity

and the electron thermal conductivity to agree with the values calculated

by Spitzer [40] and others for a fully ionized plasma. These are

Nm

= i: I kski= 1.84me i/2× i0-i0 T5/2/_n A (m_sec_OK) (5.22)

Te= (5.231
l

The thermal conductivity of the ions can be neglected. The final

result is therefore

58



k k

k "- a + s

c_ Qai l-c_ "_ Qea
1+ 1+

1-_ Qaa c_ 1 +_f_ Qii

(5,24)

The pure argon atom thermal conductivity k is for our case
a

k 75_ Ua & 2.43 X lO -4 T3/4 Nm
: (m_s_c_OK) (5.25)

a 12-_k _Qaa

To calculate the total thermal conductivity, one requires the elastic

electron-atom effective hard-sphere cross-section Qea' which appears

in equation (5.24). This cross-section will exhibit unusual features

due to the previously mentioned Ramsauer effect, which is of purely

quantum-mechanical nature and appears only at low relative velocities of

the colliding electron and atom. In nature, it is a resonance between the

electron cloud in the atom and the incident electronic wave, i.e., the

electron. The electron-atom cross-section then becomes very small, less

than 1 _2 for most noble gases, for energies in the neighborhood of one

electronvolt. We shall here assume Maxwellian distribution for the fast-

moving electrons and use an effective hard-sphere cross-section Qea' which

is calculated from recent experimental data for argon by Frost and Phelps

[41]o The results are shown in Fig. 13.

The total convective thermal conductivity for partially ionized

argon was finally calculated from equation (5o18)o The numerical results

are presented in Fig. 14. We see_ that for the thermal conductivity,

the effects of ionization seem to play in at temperatures above 6000°Ko

However, the total thermal conductivity is quite insensitive to pressure
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up to 12,O00°Ko Thereafter, a higher pressure level gives a larger

total thermal conductivity. Figure 15 shows the relative importance of

the electron thermal conductivity and the reactive conductivity term.

It is worth noting that the electron contribution starts at about 6000°K,

when the degree of ionization is still very small, and rapidly becomes

most important at temperatures above IO,O00°K. The reactive conductivity

contributes to the total thermal conductivity at temperatures above

8000°K. Its maximum importance occurs at temperatures about 13,000 -

14,000°K for pressures of the order magnitude i atm. Typically it here

amounts to 30% of the total thermal conductivity. The reactive

conductivity makes the total conductivity rise with temperature, level

off, and even causes a weak maximum around 14,000°K for low pressures.

This is demonstrated in Fig. 14. The contribution from pure atoms is

very small above 13,000°K, and can definitely be neglected above 15,000°K.

Finally, we will calculate and discuss the Prandtl number. As

the boundary layer equations indicated, this dimensionless parameter is

very important to the problem. The Prandtl number is essentially a

dimensionless measure of the ratio of the diffusivity of energy and the

diffusivity of momentum or vorticity. It has been pointed out, e.g.,

by Fay [42], that for a fully ionized gas, the Prandtl number will be

very small. The reason for this is that the plasma thermal conductivity

will then be caused by fast moving, light electrons and the viscosity by

the heavier ions. From simple kinetic theory it is seen that the Prandtl

number is then approximately Pr = (me/mi)I/2, and hence much smaller

than unity. Thermal boundary layers will therefore develop in plasmas

considerably faster than viscous boundary layers.
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Partially ionized gases behave similarly. The Prandtl numberwill

be smaller than unity, but not as small as for the fully ionized gas.

The appropriate Prandtl numberto use here (thermo-chemical equilibrium)

is the following

ceq°_
Pr = p (5.26)

kto t

where

ktot
eq°

C
P

eq.
c is the equilibrium specific heat, _ the viscosity, and
P

the total thermal conductivity. The equilibrium specific heat

may take very large values in the regime of partial ionization.

In fact_when the pressure is of the order one atmosphere, the equilibrium

specific heat is one order of magnitude larger than the frozen specific

heat at T = 143000°K (Fig. 16). Therefor%the Prandtl number for an

equilibrium partially ionized gas will be much larger than if the

composition were frozen and c were depending only upon translational
P

modes. The calculated values for equilibrium argon Pr are shown in

Fig. 17° The Prandt! number is approximately Pr = 0°65 at low

temperatures_ but starts to decrease at temperatures above 6000°K due

to the increasingly important electron thermal conductivity° The decrease

is also attributed to the charge exchange collision between the ions and

atoms_ giving a law viscosity. Above 9000°K the gas is no longer weakly

ionized_ and the equilibrium specific heat c takes large values. The
P

Prandtl number therefore exhibits first a weak minimum at 8500°K, and

thereafter a pronounced maximum at II_O00°K. The Prandt! number maximum

could be larger than unity_ if the pressure level is lowo At temperatures

above 12_O00°K the viscosity of the plasma decreases and the total thermal
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conductivity is large. Hence_the Prandti numberthen again decreases

to very low values with increasing temperature. At temperatures above

T = 15_O00°Kthe Prandtl numbermaybe as low as Pr _ lO-2 as was

earlier pointed out to be the case for a strongly ionized gas.
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6. METHODOFSOLUTIONANDRESULTS

a. Integration of the Boundary Layer Equations

The mathematical problem to be solved is a two-point boundary

value problem. The two governing ordinary differential equations are,

for the case of a plasma, strongly coupled and of non-linear, parabolic

type. In the present analysis the equations will be solved numerically

with a predictor-corrector finite difference technique, (see e.g., Fox

[43]).

The differential equations will first be transferred into a more

convenient form for numerical integration. In the case of the Rayleigh

boundary layer problem_ we note that for large values of the similarily

variable _, i.e., in the outer region of the boundary layer, the

solution is the following

du _ exp(_ 2/pr )
dq

__ 2dh ~ exp(- )
dq

(6.1)

Guided hereby, we introduce two new functions F(_]) and G(_]),

by the relations

Rayleigh's b.l.
du

d_
A* F(TI) exp(-_]2/pr )

dh * 2

d_-- = B a(n) exp(-n )

defined

(6.2)

For convenience we require that F(O) : 1 and G(O) : 1. The constants

A and B, which are to be determined from the boundary conditions
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n*(m) = 0 and h*(_) = i, then simple are the magnitudes of the velocity

and enthalpy derivatives at the wall. At infinity, F(_) and G(_)

should be constant according to equation (6.1)o In terms of the new

functions the values of the dimensionless velocity and enthalpy are

. . /0 n -n2/Pr_)dnu = 1 - A F(_) exp(

h = B G(_) exp(- 2)d_

(6.3)

We claim, that if the density-viscosity product p_ and the Prandtl

number Pr do not vary too drastically across the boundary layer, the

functions F(N) and G(_) should be of the order magnitude unity and

well behaved functions of _. They are determined from the boundary

layer overall momentum and energy relations (2°26, 2°27)° Integrated

once_ these equations become

F(_)-
P_

G(_)=
p_

exp(rl2/pr°°)l._- Pr---_ _ F(T]) exp(-_]2(pr)d_

(6.4)

Pr exp(2)[(P_)wPr /0_Pr Pr 2 _ G(TI) exp(-_12)dTl -

.2 U 2 n ,_',_ ]A * h -hW pr f 0 _P_ F2(n) exp(_242/pr )dn
B oo w

(6°5)

These equations are here written in a convenient form for numerical

integration°

For reference, we shall mention that F = 1 is the solution to the

momentum equation when the density-viscosity product Pg is constant°
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From the boundary condition u*(_) = O, the parameter A is found to

be A = 2
0o

If, in addition, the Prandtl number is constant, the

energy equation becomes

[o(_)= exp(02) i - 2 _ o(_)exp(-_)d_

.2 U 2
A w

* h -h
B _ w

f0 1Pr exp( -2_2/pr )dq (6.6 )

The integration of G(q) could easily be performed numerically° The

parameter B is given by the boundary condition at infinity, h*(_) = i.

We note that if the factor U_/(h -hw) in the viscous dissipation term is

sufficiently large, there will be a local enthalpy maximum in the boundary

layer_ provided that the wall enthalpy gradient is positive, i.e°, if

B > O. This is also true for the full problem (equations (6.4, 6.5))°

In the shock tube side-wall plasma boundary layer problem it is

not convenient to use the transformations (6.2). The reason for this

lies in the additional terms (C+C)/C in the boundary layer momentum

and energy equations which add to the non-linearity of the problem.

Even for constant density-viscosity product O_ and Prandtly number Pr

the functions F(q) and G(_) would be irregular. We simply choose to

solve the side-wall boundary layer equations directly in terms of normalized

velocity and enthalpy gradients° For this purpose_ we introduce the two

functions H(q) and K(_) defined as

du
- ,AK(_)

dn

*
dh _

d--_----B H(n)
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We require that K(O) : i and H(O): io

at infinity° In terms of K(_) and H(_)

u and enthalpy h become

. . _c_

Both functions must vanish

the dimensionless velocity

(6°8)

The governing equations for K(_) and H(_), namely the momentum and

energy eq_.ations are

(P_)= C /(P_)w I+C 2 /ON )
. T_ K(q)dv I (6°9)

K(_) - P_ U +C _ C Pr

H(_) :
P_

C Pr /(pB)w Pr I+C

* Pr _ Pr Cu +C

A -U2 )2 _ .
2 _jd_ * h -h _ •

B _o w

(6o10)

In the shock tube side-wall problem, the four equations (6.8-6olO)

uniquely determine K(h) and H(_) as well as u*(_) and h*(h),

provided that the constants of the integration A and B are known°

in the present method 3 the values of A and B had to be guessed

initially° These values Mere improved successively by iteration° A

finite difference tecYmique was applied in performing calculations from

the wall to _ = 5 (in some examples), which is well outside the

essen_la± boundary layer. The calculated values for velocity and enthaipy

at _infinity :;, ioe._ _ = 5, were compared with the required boundary
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conditions, namely u = i and h = i. New values of A and B

were then estimated on the basis of this comparison. Since the boundary

layer equations (6.8, 6.9) are highly non-linear in nature, the conver-

gence to the correct values of A and B presented difficulties.

Several convergence techniques were tried, but not many of them were both

stable and rapid° In fac% stable convergence was obtained only if the

initial guesses for A and B was sufficiently close to the correct

values. Typically 8-15 iterations had to be performed for a certain

set of free stream conditions layer until the boundary conditions were

satisfied. The required accuracy was normally u*(5) = 0 ± lO -4 and

h*(5) = 1 ± lO °4. The Rayleigh boundary layer equations were integrated

in a similar fashion.

The finite difference technique used was in principle a predictor-

corrector method, and the same for both the Rayleigh and the side-wall

boundary layers. We shall not go into much detail_ but illustrate the

method used only by showing how, e.go, the boundary layer momentum

equation (6.8) for the side-wall problem was treated. Assume therefore

that the solution to boundary layer equations is known in the region

0 _ _ _ Hi, where i denotes the i-th step. In the integration the

constant step-size is A% and by assumption much smaller than unity.

The predictor formula used to calculate the function K at the point

_i + An' Ki+l, was the following

Predictor:

Ki+ I = 2
pla u i pla u 7C +

x

× (6.ll)

(°_)w l+C

c Pr _ I_(_)dn+ 9 (2J_l I< -16_ _K _ _ <.
co i i i-± i-± i-2 --_]]
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This formula predicts a value for Ki+l, which in fact may be fairly

inaccurate. A similar predictor formula was derived from the energy

equation and used to determine Hi+ 1. With the aid of equation (6.8)

the associated values of velocity ui+ 1 and entha.lpy hi+ 1 could also

be predicted° Hence, the thermodynamic state of the gas at the point

.

rli+l was then known approximately from hi+l, and the related transport

properties could be calculated. The following deferred correction formula

was used thereafter to improve the accuracy of the predicted value Ki+ 1

Corrector:

- + <5 i+lKi+l+8 i i- i.l i_l

(6.12)

This corrector and corresponding corrector formulas for Hi+l,

Ui+l_ and hi+ 1 were used repeatedly until the iteration error became

acceptably small. In general, the corrector formulas were used only once

or twice to obtain desired accuracy when the step size was smaller than

= 0o0!.

The n-omerical calculations were performed on a digital computer

(Burrough's B5500). Typically, the necessary computing time for one

The author gratefully will be willing to supply any interested person

with copies of the computer programs developed. These are written

in a Stanford University version of the computer language ALGOL°

77



boundary layer was 1-2 minutes if the boundary conditions_ u and h

at _ = 5, were to be within 10 -4 of the desired values° The mentioned

computing time also includes calculations of the thermodynamic and

transport properties of the argon plasma at the particular pressure.

After that integration of the plasma boundary layer equations was performed,

certain optical properties_such as fringe shifts and deflection angles of

monochromatic light through the plasma boundary laye_were calculated on

the basis of the boundary layer density solutions°

b. Solutions to the Rayleigh Boundary Layer

In this section we will present a few of the significant results

of the numerical calculations of the equilibrium Rayleigh argon plasma

boundary layer° We include the results for the shock tL_e end-wall

boundary layer calculations as a special case of the Rayleigh boundary

layer_ namely for Uw = O. The range of plasma free stream conditions

considered are such as can be obtained experimentally behind normal

shock waves in argon° These properties were reported in Section 4o

Hence_ we shall consider cases when the plasma temperature is of the

1023 -3
order T = 14_000°K, the number density free electrons n _ m

e

and the pressure p = i atm (105 Newtons/m2)o The wall temperature is

in all cases assumed to be T = 300°Ko The temperature jump for a
w

metallic wall will be calculated subsequently and is shown to be small. The

above assumption for the wall temperature is therefore quite realistic.

Results for the dimensionless velocity and enthalpy profiles are

shown in Figures 18-21o It is clear from these figures that these

profiles are quite different from the usual error function curves. The
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latter are solutions to the simple Rayleigh problem with no dissipation

and constant fluid transport properties. In all cases studied numerically,

the velocity boundary layer is thinner than the enthalpy boundary layer°

The transition to free stream conditions is smooth only for the enthalpy

.
profile. Typically h is larger than 0°99 when _ > 2.5° Approaching

the wall, the velocity increases rapidly from zero to large values

d2u*
between _ = 2 and _ = io The derivative 2 is very large at the

dh

outer edge of the velocity boundary layer. The re_son for this is the

small value of the plasma density-viscosity product P_ in this region°

The velocity and enthalpy profiles are quite sensitive to change of

the pressure level° As is demonstrated in Fig° 18, a higher pressure

tends to make the boundary layer thinner along the m-coordinate. However,

in the true physical plane, this is not certainly a true statement°

Furthermore 3 the enthalpy profiles are quite different when the wall

velocity U is varied. As may be seen from Fig. 19, the enthalpy for
w

a given value of _ becomes larger with increasing wall velocity° The

reason herefore is the viscous dissipation. That the effect of changing

the wall velocity on the enthalpy profile is drastic, is also shown in

Fig° 20° For a wall velocity of 8000 m/sec and a free stream temperature

of T = 14,000°K and pressure p = 105 N/m 2 (I atmo ), there is still no

local temperature maximum in the boundary layer due to the viscous

dissipation. If the wall velocity were raised above 1%000 m/sec such

a maximum will, however occur. For small values of the similarity parameter

_, the dimensionless velocity profiles do not change much with a varying

wall velocity U . From Fig° 20 it is found that for _ < 0o5 there is
W

no noticeable difference in u, when the wall velocity is varied from

U w = 4000 m/sec to Uw = 8000 m/sec.
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The enthalpy profiles presented exhibit a change of sign in

at positions corresponding to temperatures at which the electron

thermal conductivity and the reactive conductivity start to become

important. It corresponds to the "hump" in the total thermal conductivity

at T _ 7000°K (Fig. 14) and an increasing value of the specific heat c
P

(Fig. 16)o Any similar effect is not noticeable for the boundary layer

temperature profiles.

The integrations of the boundary layer equations is performed with

the similarity parameter _ as independent variable. After the solution

h = h*(q) is known, a translation back to the physical plane (y_t) is

possible. From the original transformations we find immediately the

following relation

-Z-- = 2_ *V7 Y (6o13)

where; by definition

* /00 P_
-- dR (6.14)

y = p

The relation between y and _ is highly non-linear due to the large

variation in density across the boundary layer. In Fig. 23 such a

relation between y and N is shown for the case T = 143000°K and

T = 300°K. In the following figure, the distance from the wall per unit
W

of y j i.e. 3 y/y*, is given as a function of time t for a few

selected argon plasma free stream conditions. Naturally, this relation

is independent of wall velocity U o
W
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Various boundary layer thicknesses were obtained by use of the

above relations. In Fig. 25 is shownthe enthalpy boundary layer thick-

ness defined as y(h = 0.99 ). Its variation with wall velocity U is
W

shown. It is interesting to note that the enthalpy boundary layer thick-

ness slightly decreases with velocity in the velocity range considered°

The velocity boundary layer thickness, y(u = O.O1), stays more constant

when the wall velocity is changed. The latter occupies 68% of the enthalpy

boundary layer thickness in this example (T = 14,000°K, p = 1 atm)

roughly. Classical boundary layer theory for constant properties says

that the velocity boundary layer should fill a fraction _ of the

enthalpy layer. Using the calculated value Pr = 0.374 for the free

stream plasma, classical theory underestimates slightly the ratio of

these layers to 61%, as compared with the above-mentioned value of 68%.

The induced velocity v in the y-direction (Fig. l) is calculated

easily from the continuity equation (2o15) if O = P(q) is known. The

result is

°- fo 0p _" p_ y

After some simple algebraic work one finds

(6o16)

t-i/2.
Hence, the velocity v depends upon time as If the density

in the boundary layer is everywhere decreasing with q, as is the

typical case here# the induced motion is directed towards the wall. If

the density was increasing, i.e., a decreasing temperature profil% the
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induced motion is everywhere directed a_ay from the wall (i.e., in the pos-

itive y-direction. This is the case for a thermally insulated wall.

The sameeffect could also be present when the wall velocity Uw is

sufficiently large. The viscous dissipation then leads to a very low

average gas density in the boundary layer° Here we shall only consider

moderate wall velocities and dissipation with the motion directed towards

the wallo The velocity v(_) is shownin Fig. 26 for a typical set of

free stream conditions. Wenot% that the magnitude of the velocity v

rapidly d_creases to zero when _ approaches _ = O. It should also

be noted that the induced velocity decreases in magnitude with increasing

wall velocity for large values of _. The reason for this is that the

viscous dissipation causes a decrease in the average density in the

boundary layer, and hence reduces the magnitude of the induced velocity

The boundary layer displacement thickness 5displ" could be

V e
oo

calculated from the fundamental relation (e.g., [20])

5displ" fOt= v dt (6.17)

with the help of equation (6.16) for the perpendicular velocity, the

following useful expression for the Rayleigh boundary layer displacement

thickness could be derived

$displ. = 2v t = -2 _- n - Y*
<6.18 )

_--- oo

Hence, the displacement thickness varies with time as t I/2, as do also the

82



velocity and enthalpy boundary layer thicknesses. As shownin Fig. 25,

the displacement thickness typically amount to 50%of the enthalpy

boundary layer thickness. This is quite a large value from a classical

boundary layer stand-point. However_the effect is quite obvious, when

considering that in the particular example shown_the wall density is

very high_ namely, Pw= 65 0_.

The total convective energy transfer flux at the wall is calculated

from the relation

% = - (kt°t _-_Y)w :- - (6.19)

The temperature gradient is here evaluated from the numerical boundary

t-l�2
layer solutions. Naturally _ changes with time t as o When

the wall temperature is small, and the flow is inequilibrium, as in the

present calculations, the total thermal conductivity in expression (6o19)

takes the pure atom value. The fact that the gas is in the ionized state

does therefore not introduce additional modes of convective energy trans-

fer over the non-ionized boundary layers. Howeve_ the temperature

gradient at the wall is strongly dependent upon the plasma outer conditions

with a resultant effect on the energy fluxo The total energy transfer

rate at the wall, qw3 may be written in the following appropriate

dimensionless form

% t1/2cPw 1 (_P)w dh*
,= - _ (ktot0). (d----_)w (6°20)

(h_-h w) -_/Cp 0 Atot

Heat transfer rates have been evaluated according to this formula for
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the plasma Rayleigh boundary layers. In Fig. 27 are shown a few results.

The heat transfer rate is seen to increase with wall velocity U and
w

increasing pressur_ for a given free stream equilibrium plasma temperature.

At this point it is appropriate to calculate the wall temperature

jump 2_ at time t = 0 for a homogeneous metallic wall. It is a well
w

known fact that the wall temperature will take a constant value for

times t > O, if the heat transfer rate to the wall is of the form

qw _ t-l/2' as it is in present cases. If k, 0 and c are the

(constant) thermal conductivity, density, and specific heat for the wall

material_ the temperature jump AT w becomes

w tl/2 i/2AT = _% (6.21)

Here qw is the heat transfer rate in the gas at the wal_ as calculated

e.g._ from equation (6.19). For the case of aluminummaterial, the

theoretical results for wall temperature jump AT are shown in Fig. 28
w

as a function of pressure for a typical set of free stream conditions.

From this figure it is concluded that the wall temperature jump is only

between 2.5 and 15°K when the pressure is 0.i < p < i00 atm 3 for a

free stream temperature of 14_O00°K. Hence, in an experimental situation

the wall temperature may easily be kept at Tw _ 300°K, which was one

of the initial assumptions in the present plasma boundary layer analysis.

Furthermore_ the shear stress at the wall • , could be determined
W

from the following expression

(P )w *

d'u (6.22)w
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In terms of the non-dimensional skin friction coefficien_this could also

be written

-%
(6_23)

Here R is a Reynolds number defined as

t U 2
W

(6°24)

Naturail_ in order for the boundary layer calculations to be vali_we

require that this Reynolds number is much larger than unity, R >> 1.

For times t larger than one microsecond and pressures larger than OoO1

arm, which has mainly been considered here, this condition is certainly

satisfied° If R is larger than, e.g., l06, turbulence is likely to

occur. We leave the question of transition to turbulent plasma boundary

layer open.

Finally, it is of interest to mention, under which conditions

the convective net energy flux from the gas is positive or negative° The

motion of the wall naturally introduces energy to the gas through the

shear stress, in the present frame of reference° Part of this energy is

given to the gas directly as kinetic energy_and part as thermal energy

through the dissipation mechanism. The net energy flux from the gas

per unit time and unit wall surface area is (®% - %_w )° With the

help of equations (6.20, 6.22) it is easy to show that this quantity

is positive, i.e., the gas is losing energy, when the following non-

equality is satisfied
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du

U2 (- _--_-- )

Pr w w
w h -h . < i (5).6.2_.

w dh

w

Most Rayleigh plasma boundary layers which are analysed here satisfy

this relation, i.e°, the plasma boundary layer is giving away energy to

the wall.

Finally shall be given results for the ambipolar electrical

characteristics of the Rayleigh boundary layers. The strength of the

induced ambipolar electric field E in the y-direction is calculated
Y

from equation (3.7). After some algebraic reduction the following result

is obtained

Hence, the induced electric field is directed in the negative y-direction

since the degree of ionization _ increases with q. Furthermore, the

electric field varies with time as E _ t -1/2o The same dependence upon

time is true also for the diffusion velocity, the boundary layer thickness,

etc. In Fig. (29) is shown a numerical evaluation of the electric

field strength. We see that the value of E monotomically increases
Y

with decreasing value of the wall distance parameter _ and decreasing

temperature T. For exampl_ after t = l0 microsec at a position in

the boundary layer corresponding to a temperature of 13,000°K, the

strength of the electric field is 2ol Volts/mm. At the temperature

6000°K the corresponding field strength is as much as llO Volts/m_°
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The ambipolar electric field solution breaks down when the local

Debye length, _ is of the same order magnitude or larger than the

distance to the wall y° This occurs at temperatures of the order h0OO°K

or lower for times t On the microsecond level° The results in Fig.

29 should then only be used at temperatures above 4000°K (_ _ 0.3)°

With the electric field associated electric ambipolar potential

difference V can be calculated by integration of the electric field

strength E in the y-directiono Results of such an integration are
Y

already given in Section 3, and grafically shown in Fig° 3 for the

equilibrium argon plasma. The potential difference across the ambipolar

region between two given temperatures was shown to be independent of

time°

The electron current density Je is obtained from the expression

Je : neVeqe (6°27)

Here V is the ambipolar electron diffusion velocity, which is given
e

by equation (3°8)° Since the ambipolar diffusion velocity here is in

the negative y-direction, the electron current is positive and directed

in the positive y-directiono The ion current is in the negative y_

direction and equal to the electron current in magnitud% since by

a,ssumption, the total current density is zero° Using the expression (3°8)

for the ambipolar diffusion velocity_ the electron current density becomes

Je_: _ qi Damb n 0 de O-_ d-_ (£n _) (6°28)
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Hence, the electron current density varies with time as Je _ t-I/2 (as

the electric field strength). Due to the rapid decrease in number density

of free electrons n with decreasing temperature for the equilibrium
e

argon plasma_the electron current becomes small at temperatures below

8000°K. As could be seen in Fig. 29, the electron current density Je

has a maximum at a temperature II,500°K in the particular example where

the free stream temperature is 14,000°K. At time t = i0 microsec, the

i 2
maximum electron current density is Je = 24 Amperes/cm •

For reference is also given the ambipolar diffusion velocity and

the average mass velocity v in the y-direction in Fig. 29. In the

example shown, the ambipolar diffusion velocity is larger in magnitude

than the mass velocity when the temperature is lower than 12,000°K. At

the temperature 7000°K, the diffusion velocity is two orders of magnitude

larger than the mass velocity v, and of the order i00 m/see for

t = i0 microsec.

c. Solutions to the Shock Tube Side-Wall Boundary Layer

Solutions to the shock tube side-wall boundary layer problem were

obtained in a fashion similar to that for the Rayleigh boundary layer.

The results are qualitatively the same.

Due to the appearance of the term (u*+C)/C in the boundary

layer equations, the behavior of the solutions u*(_) and h*(_) are,

howeveD quite different from the Rayleigh solutions. Only when u

is small, u < C, i.e., the factor (u +C)/C is close to unity, the

solutions are similar in shape. The side-wall boundary layer solutions
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u*(_) and h*(_) approach the free stream values u*(_) = 0 and

h*(_) = 1 at larger values of _ than the Rayleigh solutions° Typically

the boundary layer edge _(h = 0.99) now corresponds to _ _ 3.5_

instead of the previous h _ 2.5 for the Rayleigh boundary layer° This

is shown in Fig° 30 for the case of a shock wave with speed U = 6000
S

m/sec in argon of initial temperature T = 298°K and pressure Pl = 5

mm Hgo In the same figure is also shown the derivative functions K(h)

and H(_), defined by equation (6.7), and in terms of which the numerical

integration were carried out° It is interesting to note that both

functions K(h) and H(_) have pronounced maxima at _ = 2°6 and

= 2°8 respectivel_close to the outer edge of the boundary layer° In

particular the maximum for the velocity derivative function K(_) is

sharp, K _ 6°5° The function K(_) very rapidly decrease to zero
max

behind the maximum. Hence, the velocity u*(_) very rapidly approach

the free stream value u*(_) = O, and with a large value of the second

d2u*
derivative 2 Furthermor_the function H(_) has a local maximum

dR

at _ _ 0o7_ corresponding to T = 5000°K in the particular example

shown° This feature is common with the Rayleigh boundary layer in

equilibrium argon plasmas. The reason for this local maximum in H(h)

is the rapidly increasing total thermal conductivity and a thereby associated

lowering of the Prandtl number in this temperature region of the argon

gas°

Figure 31 shows the temperature and velocity profiles for the same

side-wall boundary layer. For reference is also plotted the degree of

ionization % the Prandtl number Pr, and the inverse density-viscosity

product (p_)j(p_). The variation in-the density-viscosity product
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across the boundary layer is larg_ and here as much as one order of

magnitude. The variation in the Prandtl number is moderate, 0.65 _ Pr _ 0.4°

The gas is strongly ionized above lO,O00°K, and the free stream value of

the ionization is _ = 0°242. Further results are shown in the Appendix.

The transformation back to the physical plane (x,y) is done by

the relation

Y-_- = 2 _ i *

W Cpp Y (6°29)

where the dimensionless quantity y is defined as

. =fO _ O_ .C d_ (6.30)Y 0 u +C

These relations are analogous to the Rayleigh boundary layer relations

(6.13, 6.14). The results of a transformation of this kind are demon-

strated in Fig. 32 and also in the Appendix. We note that the enthalpy

.
boundary layer edger q _ 3.5 roughly corresponds to the value y _ 1.

The enthalpy boundary layer thickness in the particular example could

therefore approximately be written

* 5enthalpy _ _pk_ _2 1
y = l: -- 2 x (6.31)

For a given value of

.
proportional to the dimensionless quantity y .

then conclude that the physical wall distance y

than the enthalpy boundary layer thickness when

x, the distance from the wall_ y, is directly

From Fig. 32 we may

is very much smaller

_ 0°5. For reference

we shall give the following table which relates the distance from the
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wall, y (millimeters), to the temperature, T, in the boundary layer

for the previously discussed side-wall boundary layer.

Distance from wall y(mm)"

x meter T=6000°K T=8000°K T=IO, OOO°K T=I2,000°K T=14,070°K

0.01

0.05

Oo20

o°o069

0.0152

o.o3o8

o.o132

o.o294

o.o588

o.o275

o.o615

o.123

o.o618

Oo138

0°277 °

O.343

O.768

io 535

U = 6000 m/sec
S

U2 : 675 m/sec

p : 3.4x lO5 /m2;

T = 143 i00 oK

T = 300°K
W

(Pl = 5 _m Hg.)

Notice: Last column corresponds to enthalpy boundary layer edge

since T(h* = 0.990) = 14,O70°K.

Hence at a distance x = 0.05 meter behind the shock wave the enthalpy

boundary layer thickness is 8enthalpy = 0°768 mm. At a distance 0.0615

mm from the wall the temperature is IO,O00°Ko This wall distance

corresponds only to 8% of the enthalpy boundary layer thickness°

The induced velocity v in the y-direction (perpendicnlar to the

wall, y = O) is calculated from the continuity equation (2°30)° We

find that

v = (6°32)

#
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and therefore

--X-

P_o u +C y*]
p C

(6.33)

As was found for some of the Rayleigh boundary layers, the induced

velocity v is negative everywhere in the boundary layer and hence

directed towards the wall. A calculation of the induced velocity v is

demonstrated in Fig. 32. At a distance x = 0.01 from the shock wave

the magnitude of the induced velocity v is of the order v = 5 m/sec

at the boundary layer edge. It rapidly decreases to zero when q < i.

The boundary layer displacement thickness 5displ" becomes

5displ. i /0x 2xv_(x) # k __ x: b-/ voo(x) = u2 = -2 cpp 

(6.34)

The expression inside the bracket should be evaluated at free stream

conditions. Since v is negativ% the displacement thickness also

becomes negative. The magnitude of the displacement thickness is quite

large in the particular example studied andamounts to 45% of the thermal

boundary layer thickness.

The total energy flux at the wall, the wall shear stress, etc.

can be calculated from the boundary layer solutions u*(q) and h (q),

as was done for the Rayleigh boundary layers. We shall here not give

the results of such straightforward calculations.
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d. Criterion for Chemical Equilibrium in the Boundary Layer Flow

Most calculations presented herein assumechemical equilibrium in

the boundary layer° This is an ideal assumption and will not be correct

throughout the boundary layer for the argon plasma for example. We

shall determine where the equilibrium assumption is valid, and where it

breaks down. In this connection, we must examine the electron continuity

equation (2°3) which in the physical plane (y_t) reads, for the case

of the Rayleigh problem,

8n 8ne 8 e
+ _-y (ne(V+Ve)) = (t]_-_-)coll (6.35)

Here again, v is the mean mass velocity in the y-direction, and V
e

the electron diffusion velocity in the same direction. In the original

treatment of the plasma boundary layer we did not have to solve this

equation when the gas was in local equilibrium° It was then replaced

by a relation of the Saha type for the composition. However, the

continuity equation is still very important in the equilibrium case° It
8n

e

information about the magnitude of the collision term (t_)coll,provides

which now expresses the equilibrium change of number density electrons

per unit time due to reacting collisions (ionizing collisions and

rec omb inat ions ).

We evaluate the collision-term from the equilibrium solution and

make use of the facts that v _ t -1/2 and V ~ t -1/2o We shall here
e

only be concerned with the ambipolar region, i.eo, V e is the ambipolar

diffusion velocity. In terms of the-similarity parameter _ the collision-

term then takes the form
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Rayleigh's b°l:

_n dn
t r___e i 1 e+P
-- __-_co__ _ : _ _ n d_ne e

i _d (v_) +

+O I

2

1 d VT")
n dn (neVe
e

(6.36)

Here we find from equation (6.16)

d O_d (_._-,) : _ n _ (-g-) (6.37)

The following expression is deduced from the ambipolar relations

i d__P IP__ n
neVer v : - Damb _ O_ e dn

(6.38)

Therefore_ the collision-term for equilibrium flow becomes

_n

t e
equilibrium: _-- (t_)coll

e

= _ (Qconv. + Qdiff. ) (6.39)

where

an

Qconv. i i e
= _ _ [_ dn

e

+___d Poo 1 d _)_ d-_(T-)]=_(_n e
(6.40)

Qdiff. _
Cp O_ O i d ne £__ d_

k p_ n d_ (Damb -_--p_d'_)
e

(6.4l)
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Here Qconv. is a dimensionless measure of the collisional loss of

electrons necessary for equilibrium and due to the change of density of

the gas with time (the convective cooling)° The quantity Qdiffo is

a measure of the required loss of electrons due to the diffusion. The

quantity Qdiffo will naturally be most important close to the wall in

the boundary layer_ where the diffusion is large° This is clearly

demonstrated in Fig° 33. For the particular example shown here, the

convective term Qconv° is less than two orders of magnitude smaller

than Qdiff. when the temperature is below 6000°K_ At T = 12,000°K

the diffusive term is zero. For temperatures higher than this, it is

interesting to note that Qdiff. is negative° As we approach free

stream conditions_ the ratio Qdiff./Qconvo is almost constant, and

approaches the value -0°44 in this example. Since there is no temperature

overshoot in the particular examples shown_ it is not surprising that

the collision-term is everywhere negative° This means that for equilibrium_

the number of de-ionizing collisions uniformly must exceed the number

of ionizing collisions in the boundary layer°

Figure 34 shows the available number of de-ionizing collisions

for the argon plasma° The relevant argon recombination process in the

temperature range of interest is the usual three-body recombination

A+ *e + e + _e + A + hv

where A + is the argon ion, e the electron, and A an exited atom°

Aavail
In order to calculate the available number of recombination_ _

per unit time per electron_ results from classical electron impact theory

were used below Te = 4000°K, and results from [12] for high
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temperatures° Hence, the data used are the following

Qavailo _ i _n 2e n (6.42)n (t_ ) = -krec e
e rec

where

= 2.3 X 10 -20 X T -4"5 (m6/sec) (T e < 4000°K)krec e

k = 1.3 X 10 -44 (2 + 134000) exp(49000/Te ) (#/sec)rec T
e

(T > 4000°K)
e --

}(6°43)

Here Qavailo is the available number of recombinations per electron

per unit time° Thus, this quantity has the dimension t -I.

Obviously the gas in the boundary layer will be in near chemical

equilibrium when the number of recombinations per unit time exceeds the

necessary net number of recombinations for equilibrium, as calculated

from equation (6°39). We state, therefore, that the gas composition will

be locally in equilibrium in the Rayleigh boundary layer when the follow-

ing non-equality is satisfied locally:

Equilibrium Qavail. t Qavail o

Criterion: dn Qconvo Qdiff. >> !

l +n
e

We conclude, e.go, from Figs. 55_ 54 for the argon Rayleigh boundary

layers that for the pressure p = 105 N/m 2 (_ i atm), the gas will be

in near equilibrium only at temperatures above 13,000°K at times

t > 10 -5 sec, above IO,500°K for t > 10 -3 sec, and above 8500°K for

t > I0 "I sec. At lower pressures corresponding times are longer° For
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time scales of experimental interes% and time scales smaller or of the

same order of magnitude as those characteristic of radiation cooling,

i.e., times of the order t > lO -4 sec, we conclude that the Rayleigh

boundary layers in argon will be in equilibrium only above, say ll, O00°K,

and close to frozen in the region belo_ 8000°K.

A similar analysis could be carried out for the shock tube side-

_allboundary layer. Here, we shall give only the formula for the

determination of the net collisional change of electron number density

necessary forthe flow to be in chemical equilibrium. The relation is

x__2_T_ (t3_-)collbne = _ (Qconv. + Qdiff.) (6.45)

where

* dn * n

Qconv. 1 u +C ____e + p d (_)] 1 u +C d _)= g q _ [ dq p dq =g q C du (In
e

(6.46)

c , * n
Qdiff. P_P_ u +C p__ i d u +C e p d_

- _ k C p_ ne dq (Damb C _ p_ d_ ) (6.47)

These expressions also degenerate to the expressions for the Rayleigh

boundary laye_ if we let C _. As was the case for the Rayleigh boundary

layer 3 the diffusive term is most important close to the wal_and the

convective term most important close to free stream conditions. The

qualitative results for the extent of the equilibrium region_ determined

from a similar criterion resemble the previous results for the Rayleigh

proble_ and will not be reported here.

97



RAYLEIGH'S BOUNDARY LAYER

EQUILIBRIUM ARGON

U w - 4000 m/sec
>" .4
I.-- Too = 14000 ° K

-JO Tw - :500" K
I., .3
>

m

m

0 I
0 I 2 3

DIMENSIONLESS WALL DISTANCE PARAMETER

Fig. 18. Equilibrium argon velocity and enthalpy profiles for

Rayleigh's boundary layer as a function of pressure.
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7- TW0-TEMPERATURE BOUNDARY LAYER:

a. General

A LINEARIZED MODEL

In _he previous analysis we have assumed that the temperature of

the electron_ ion_ and atom fluids are equal° This assumption will now

be studied in some detail. Due to the ineffective energy transfer rate

between electrons and heavy particle_ the electron temperature may

deviate substantially from the heavy particle temperature. In particular,

this is true in the cold region of the boundary laye_ close to the wallo

The collisional energy transfer rate between the heavy particles

and the electrons necessary to maintain temperature equilibrium between

the electron and heavy particle fluids may be calculated from the

electron energy equation (2.10). The approach is similar in nature to

the one used to determine the extent of chemical equilibrium. We shall,

for simplicity, assume here that the flow is in chemical equilibrium.

Restricting ourselves to the Rayleigh boundary layer, we note first that

the collision-term in the electron energy equation takes the form

_ _ _ _v
(Peee)coll=_Y (_eee)+_ (0eeeV)+_qe-Je °_y+Pe_ (7ol)

Y

With the similarity parameter _ as the independent variable, we find

for the equilibrium case

t _t (0eee)coll = - _ n _ (0ee e) + 0eee _ _ _-_ dn

_t o0-_5 an q_) e _y+Pe_ an
Y

(7.s)
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° .

An alternative expression is obtained if we subtract herefrom the total

energy equation (2o13_ which has no collision-term. The result is

t _ (Peee)coll = - _' _ _" (Peee-Pe) + (Peee-Pe) p-- i _ d (v_ +
p_ 2 dq

+0__i _ d
_ 7 d_ [(qe-q)_]- t Je E

yY

+ (pe_p)__ l_ _ d

I Cpp_ 2
+ _ _ _(_-)2_du_p_ ,_. _ (7.3)

The last term here represents the viscous dissipation° As previously_

it has been assumed that the total current j is zero. The expression

on the right hand side of these equations is independent of time t in

the ambipolar region. In particular this is true for the Joule heating

term since _Je _ t"1/2 and E _ t-1/2° In the ambipolar region we
Y

Y

have

n _ n

Je = 2 Dia q_ l_ne_ _ (-_) (7_4)
Y

kT n _ n

One may arrive at the following expression for the electron Joule heating

associated with the ambipolar diffusion:

c _ 2 2
DambPi i p d_

Je E = P°°D ( )(_-_) (7,6)
Y y t I_ k c_(l+C_)2

Furthermore, the electron heat transfer term becomes
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d
(7.7)

Here we have made the assumption that

electron thermal conductivity.

where k is the
e

With the above calculated Joule heating and heat transfer terms,

the dimensionless collisional energy transfer rate necessary for main-

taining temperature equilibrium becomes

_equilo = Pe

t 8 )coll i d _n( ) +
Deee _ (peee ; - _ _ _ D5--5_

• i PooO°° t (d In o_)2 Oook ( )2 arab i d p dT
oo [i--_ dB nekT p dl] (ke Poo dB )

(7.8)

Here Pe is the electron pressure. An alternative expression is the

following:

_equilo = _ _t (Peee)coll -
Oeee

i d

2_nPe+

c pi p O_

+ _ k (t)2 arab (d _n OC]2_l Ooo d dT[_ dq " nekT p dq ((ke-k) O__p_)+

+ (7°9)
e

We have here made use of the fact that the plasma pressure p is con-

stant throughout the boundary layer. The first term on the right hand

side of equation (7.8) represents the required collisional energy transfer
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rate due to convection. We note that when the electron pressure increases

with _, as is the case for the present boundary layers, the associated

contribution to the collision term is negative° The first term inside

the bracket in the same equation represents the effect of the induced

electric field and ambipolar diffusion in the direction thereof, i.eo,

the Joule heating term. Hence, there is obviously a loss of electron

energy when the electron fluid diffuses in the direction of the electric

field, i.e., in the negative y-direction. Finally, the last term in

equation (7.8) represents the effect of heat transfer in the electron

fluid itself. This effect is very important and may in fact be the

dominant when the gas is partially ionized. The contribution to _equil.

from the electron heat transfer term may take both positive and negative

values in the presently investigated boundary layers° Close to the

wall it is in general negative, i.e., the electron fluid has to transfer

energy to the ion-atom fluids if the temperatures should be equal. In

the ambipolar region, which is the only one considered here, the heat

transfer term is much larger than the term arising from the Joule heating.

We mention that a corresponding analysis of the energy balance in the

charge separation sheath should show that the Joule heating term is

important here. In fact, in the sheath region the electron energy

equation would express only the coupling between the Joule heating and

the electron thermal flux, since the convective terms are small and can

be neglected.

The main energy transfer mechanism between the electron fluid and

the ion and atom fluids is the elastic two-body collision between either

an electron and an ion_or between an electron and an atom° The
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contribution from inelastic collisions is assumedto be small since the

number density of particles, which have kinetic energies comparable to

the excitation energies in argon are small.

Weassumethat the electron fluid has a Maxwellian velocity

distribution function at temperature Te3 and that the ion and atom

fluids have similar distributions at their commontemperature T = T.oa 1

In a Lorentzian model_in which the ions and atoms are stationary and

only the electrons are moving, the elastic energy transfer rate ¢ to
me

the electrons from the atoms becomes (eogo, [12])

2
m T

eae - _eem [_ - i] name (Qae(We)W3e) (7o10)
a e

and from the ions to the electrons

2
m W.

e.le "=__em.[_ - i] n.nme (Qie(We)W3e) (7o11)
l e

Here Qae(We) is an effective hard sphere elastic collision cross-section

for the electron-atom collisions, and Qie(We) the corresponding cross-

section for electron-ion collisions° The brackets indicate a mean value

taken over the Maxwellian electron distribution function. For simplicity

we shall give here a simplified treatmen_and assume that the cross-

sections do not vary much with electron speed.

following expressions for the mean values

5kT e 3/2
<aae(We)W2>a aae(Te)

e

3kT e 3/2

(Qie(We)W_) A (-_-) Qie(Te)
e

We may then use the

(7o12)
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Here Qae(Te) and Qie(Te) are effective average cross-sections at the

electron temperature Te, eog., those previously discussed in Section 5.

With this assumption the elastic energy transfer rate to the electron

fluid simply becomes

E = 6 + C.
ae me

e

m
a

(3kTe)3/2ne2 [___a_ 1][Qie(Te)+ 1+_ Qae(Te)]
e

(7.13)

We have assumed here that the gas is quasi-neutral, i.e., ni/n e m i;

and hence introduced _, the degree of ionization. The energy trans-

fer rate Savail° per unit energy of the electron fluid and unit relative

temperature difference (Ta/T e - I) is then

savailo _ c

Peee(Ta/Te -I)

m 3kT e i/2 i+5

= 2 __e (_____) ne[Qie(Te) + -_- Qae(Te)]m
a e

This quantity has the dimension t-I.

(7.14)

The electron and the heavy

particle fluids obviously have temperatures which are close to equal when

this rate is much larger than the required rate to maintain temperature

equilibrium_ as calculated_ e.g., for the Rayleigh boundary layer in

equation (7-9)° The criterion for local temperature equilibrium in the

boundary layer is then

Temperature t Savail°
Equilibrium = _ i (7.15 )

Criterion: _equilo

Notice that at large times t, this inequality will be satisfie_ since

Savail° and _equil° are timelindependent.
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b. The Electron Temperature in a Linearized Model

The extent of the temperature equilibrium region in the Rayleigh

argon plasma boundary layer can be determined by help of the criterion

(7o15)o _ similar criterion can be developed and used for the shock-tube

side-wall boundary layer. We shall here go one step further and actually

calculate the difference in electron and ion-atom temperatures, when it

is small° Hence, the electron temperature distribution in the boundary

layer calculated in the following is valid for large times, when the

entire boundary layer flow approaches both temperature and chemical

equilibrium.

It is convenient to introduce a dimensionless electron temperature

perturbation parameter _, defined as

: Ta(l ) (716)

where T is the heavy particle temperature. Assuming that
a

the following relation is found from equations (7°8, 7.14)

 equ!l"(Ta)

l+qO t savailo (Ta)

By help of equations (7°9, 7o14) the temperature perturbation

therefore by written

<< I:
CI + C2 + C3 + C4

m (SkT)i/22 e i+0_
-- __--- ne[Qie(T) + _ Qae(T)]m o_
a a

q_ << i,

(7o17)

qo may

(7.18)
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where

1 d

C1 = _ I]_ (In pe )

Cpp_
i

c2:- _

2 2
(£_) Damb (d _n o_)

i+_ d_p_

c
i P_P_

c3:_
oo

t I d p__ dT( ) n kT d_ [(ke'ktot) p_ _]
e

i CpooP_ 2 2

C4 : - Z-_--- ( n k----_
e

(7o19)

Here CI is a dimensionless contribution to the temperature perturbation

due to the convective cooling of the plasms, at which the total pressure

is constant but not the electron fluid pressure pe o The dimensionless

(in general negative) term C2 expresses the cooling of the electron

fluid when it diffuses in the direction of the electric field, ioeo,

towards the wall. The also dimensionless term C3, which is the most

important, is a contribution from the fact that the electron fluid

itself and the plasma have different thermal conductivities. Finally,

the negative term C2 comes from the heating of the heavy fluids through the

viscous dissipation.

The temperature perturbation function M has been calculated for some

Rayleigh boundary layers_ The results are shown in Fig° 35. For the

pressure levels of interest, the perturbation function Mt is less than

10 -6 sec, at temperatures above 12,000°K. Therefore, at times t larger

than t = 1 microsec, the temperature perturbation is small, ioe., M << i,

and we state with confidence that temperature equilibrium is present in

the boundary layer° At temperatures lower than IO,O00°K the perturbation

122



function _t becomeslarger than l0 -5 sec. Hence, if t is of the

order microseconds, we here expect temperature non-equilibriumo In the

particular example shown, the electron temperature is larger than the

heavy particle temperature. At temperatures lower than 8000°K the

perturbation function _t becomeslarger than lO-2 (sec) and increases

very rapidly with decreasing temperature° The electron temperature is

here not in equilibrium with the heavy particle temperature. It is here

practically meaningless to calculate the actual deviation in electron

temperature by equation (7.18) without considering simultaneously the

effect of chemical non-equilibriun_which (in the previous section) was also

shownto exist in this temperature region_

It is very interesting to calculate the relative importance of the

four different terms Ci which composethe temperature perturbation _°

The result of a numerical calculation is shownin Fig° 36° The individual

contributions are here normalized with the convective contribution C1,

which is positive° The ratio between the electron heat transfer term

and the convective term, C3/C1, is the largest throughout the ambipolar

region° Even close to free stream conditions this ratio is large° The

effect of viscous dissipation in the atom and ion fluids (term C4)

becomesincreasingly important with decreasing value of the similarity

parameter _, ioeo, with smaller distance to the wall. At 13,000°K in

the example given, C4 is of equal importance as the convective term C1,

but it is still about 5 times smaller than C3o Howeverat ll, O00°K C4

amounts to as muchas 50%of the electron thermal conduction term C3o

For still lower temperatures the electron thermal conduction is by far

the most important term° At 7000°K the absolute value of the ratio C4/C3
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if of the order 20° The effect on the electron temperature from the

diffusion of the electron fluid in the direction of the electric field,

described by the term C2, is quite small everywhere in the ambipolar

diffusion region. For temperatures below II_O00°K it is shown in Fig.

36 to be more important than the convection. At 8000°Kwe have C2/CI=-I0,

but the absolute value of C2 is here still two orders of magnitude

smaller than C3.

For large values of the wall velocity

effect of dissipation through the term C4

U and U2/(h_-h w), the

maybecomemajor° The

electron temperature will then be lower than the heavy particle tempera-

ture. In the outer region of the boundary layer the term C3 will still

be the most important since the viscous dissipation here is small° Then

the boundary layer may contain regions both where the electron temperature

is higher than the heavy particle temperature (close to the free stream)

and where the electron temperature is lower (close to the wall)o

In the case of shock tube side-wall boundary layers a similar

analysis could be performed. The viscous dissipation is here only

moderate due to the coupling in shock velocity and enthalpy h. An

electron conductive term, analogous to C3, is then again the most

important to the electron temperature perturbation. The electron tempera-

ture for a quasi-equilibrium argon shock tube side-wall boundary layer

as before becomeslarger than the heavy particle temperature°

It is not clear at all that in any argon plasma flow situation

with shear and heat conduction the effect of thermal conduction in the

electron fluid itself through a term such as C3 in the Rayleigh boundary

laye_ gives an elevated electron temperature. In fact_ there has been
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theoretically found situations where the effect of thermal conduction

in the electron fluid causes a low electron temperature. For temperatures

T _ 8000°K this phenomenonis not likely to occur for equilibrium argon3

since its electron thermal conductivity rapidly increases with temperature,

as is shown in Fig. 37. Hence, terms similar to C3 for the Rayleigh

boundary layer becomespositive.

It is evident from an analysis like the present, that the argon

plasma boundary layers will be in temperature equilibrium far away from

the Wall_ say for T _ 10,O00°K. This region may typically amount to

90%of the total boundary layer thickness. The non-equilibrium region

may still be of extreme importance to the wall energy flux, shear stress

and electrical characteristics. For present purposes, the effects of

temperature non-equilibrium as well as chemical non-equilibrium should

not be drastic for the equilibrium velocity and enthalpy profiles since

the degree of ionization is small in the non-equilibrium region. We

therefore believe that the calculated equilibrium velocity and enthalpy

profiles closely resemble the true profiles. For lower pressure levels

say, p _ O.1 atm., the temperature non-equilibrium region will extend

further out to higher temperature and a large degree of ionization G,

maythen cause non-negligible discrepancies.
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8. SUMMARY AND CONCLUD_G REMARES

The structure of convective laminar boundary layers in high density

plasma flows has been analyzed. The boundary layers studied are the

Rayleigh's boundary layer with both momenttun and energy exchange between

the plasma and the cold wall 3 the shock tube end-wall, and the shock tube

side-wall boundary layer. The ar_slysis was intended to apply especially

to conditions in whichthe free stream plasma energy is typically 1 eV

and the number density of free electrons ne _ 1023 m-3_ eog._ as

obtained in argon behind a strong normal shock wave, for shock Mach numbers

larger than M s = 15 and initial pressures of the order Pl = l mm Hg.

The temperature of the wall over which the boundary layer develops is

assumed to be T = 300°K.

The governing boundary layer equations were derived in a multi-

fluid, continuum model for the electrons_ ions and atoms. Chemical and

temperature equilibrium were assumed initially and radiation neglected°

No applied electromagnetic fields were considered_ but it was shown that

the induced electric field is important. The diffusive motion of the

electron and ion fluids are strongly coupled by this electric field

throughout most of the boundary layer° These ambipolar conditions were

shown not to hold only in a thin sheath adjacent to the body3in the

temperature range typically below 3000°K.

The appropriate transport properties were calculated for an

equilibrium argon plasma under the assumption of ambipolar conditions°

For this purpose, simple kinetic theory was used, which proved to be

fruitful° Pertinent results for the viscosity_ thermal conductivity 3
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and Prandtl numberwere presented up to temperatures T = 20,OO0°K. The

viscosity was found to decrease strongly with increasing temperature in

the region corresponding to partial ionization. The reason for this is

the charge exchangeand ion-ion Coulombcollision_ which then become

increasingly important over the atom-atom collision_ which has a small

cross-section. Furthermore, it was demonstrated that the ambipolar "re-

activ@" conductivity, i.e., the energy flux associated with the

diffusive motion of the species_ plays an important role when the gas is

in a partially ionized state. Typically this conductivity amounts to

20-40%of the total thermal conductivity at temperatures around 12,000°K

for the argon plasma. The Prandtl number, for the sameplasma, which

was calculated with the equilibrium value of the specific heat Cp_ had

alocal minimumat 90OO°K_and then rapidly decreased to a low value of

the order of 10-2, when the .temperature was larger than 14_OOO°K(strongly

ionized gas). Due to the low plasma viscosity, it was interesting to

note that the density-viscosity product at constant pressure typically

was two orders of magnitude larger at the wall temperature than at, e.go_

T = 14,OO0°K. Henc% neither the Prandtl number and the density-viscosity

product could be assumedto be constant across the present type of boundary

layers.

The governing boundary layer equations were solved for the case of

equilibrium composition and equal temperatures of the electron, ion and

atom fluids° The correct variation with temperature of the transport

properties was included. The method of solution was a finite difference

predictor-corrector technique. Several interesting solutions were

obtained and discussed. Due to the small plasma viscosity and therefore
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also small Prandtl number, the velocity boundary layer was found to be

always embedded in the thermal boundary layer° However, once the velocity

boundary layer started to develop, the velocity gradient was steep. Wall

heat transfer rates were calculated as was the associated small wall

temperature jump of a metallic wal_when suddenly brought into contact

with the plasma at time t = 0.

The assumption of equilibrium composition was checked in a rigorous

way. This was done with the help of the mass conservation equation for

the electron fluid together with argon recombination rate data. It was

found that the assumption of an equilibrium plasma composition breaks

down typically below temperatures of lO, O00°K. Equilibrium was established

with large certainty above ll, O00°Ko Below 8000°K the recombinations are

so rare that they could almost be neglected, i.e., the flow is frozen

here. The fact that the gas is not in equilibrium below lO,000°K should

not drastically change the velocity and enthalpy profiles much from those

calculated for equilibrium. This statement should also hold, e.g., for the

wall heat transfer° The degree of ionization in the non-equilibrium region

will be smal_ and the boundary layer structure therefore mainly determined

by the atom fluid. The electrical characteristics calculated for equilib-

rium compositio_ however, will change drastically by the lack of equilibrium°

The assumption of equaltemperatures of the electron, atom and ion

fluids was analysed similarly as the assumption of chemical equilibrium.

Since the collisional elastic energy transfer rate between the electron

fluid and the ion and atom fluids is very ineffective due to the

discrepancy in mass of the particles, the electron fluid was expected

possibly to have a different temperature than the ion-atom fluids. This effect

131



was found true_and in fact very pronounced at low temperatures. The

electron temperature for an argon plasma was determined thereafter in a

linearized model3 in which the deviation from the heavy fluid temperature

was assumedto be small° It was found that the deviation in temperature

was caused by the facts that the electron pressure is not constant across

the boundary layer (as is the case for the total pressure)_ that the

electron thermal conductivity has a different behavior with temperature

than the total thermal conductivity_ that the electron current is oriented

in the opposite direction from the ion current and therefore the Joule

heating is different for the electron and ion fluids, and finally that

the viscous dissipation heats only the ion and atom fluids. Whenthe

heavy particle temperature is lower than about 9000°K and the thermal

boundary layer thickness is of the order imm, the argon boundary layer

will notbe in temperature equilibrium. The electron temperature will

be higher than the atom-ion temperature 3 at least when the viscous

dissipation is small and the diffusion ambipolar. At temperatures above

II,000°K the temperature difference between the fluids is small for the

sameboundary layer thickness_ but the tendency is that the

electron temperature is the higher. It is concluded that a more rigorous

analysis of the present plasma boundary layers should certainly include

the possibility of simultaneous non-equilibrium in temperature and

composition. It would be quite unrealistic to treat the non-equilibrium

effects separately_ since they are strongly coupled.
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APPENDIX I

THERMODYNAMIC AND TRANSPORT PROPERTIES OF EQUILIBRIUM ARGON

Numerical results for equilibrium argon thermodynamic and trans-

port properties are presented for the pressures p = 104, p = 1053 and

p : lOs

The symbols used are the following

T

H

ALFA

NE

RO

CP

QMINUS

TEMP

VISCOSITY

AMBIDIFF

TOTCOND

REACT

ELECTR

PRANDTL

QAA

QAI

QII

Temperature T

Enthalpy h

Degree of ionization

Number density of free electrons n
e

Density p

Specific heat c

_ Qavail. P(defined in equation (6.42))

Temperature T

Viscosity

Ambipolar diffusion coefficient Dam b

Total conductivity kto t

Reactive conductivity fraction in kto t

Electron thermal conductivity fraction in

ceg'_
Prandtl number Pr =

ktot

Atom-atom elastic cross-section

Total atom-ion cross-section

Ion-ion cross-section

ktot

MKSA - units are used throughout the calculation.
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THERMODYNAMIC OATA FOR EQUILIBRIUM ARGOB_

T H

K[LVIM MW/KG

100 5.204779÷04
200 1.010958,05

300 1.561430,05

600 2.061015*05

SO0 2.602390*05

600 3.122660-05

700 3.643345*05

000 4.163825,05
000 4.664290,05

1000 5.204770.05

1200 6.245325,B1_.
1400 7.286685*05

1600 0.327650+05

1000 9.366595,0S

2000 1.040950,06

2200 1.145050,06

2400 1.249|45.06

2600 1.353245,06
2800 1.457340,06

3000 1.561430,06

3200 1.665535,06

3400 1.760820,06

3600 1.873720,06

3600 1.973610,06

4000 2.081915*06
4200 2.166010-0_

4400 2.200110_06

4600 2.$94225*06

4600 2.496340*06

5000 2.602500.06

5200 2.706738-06

5400 2.811065*06

5600 2.015630*06

5800 $.020545_06

6000 3.126018*06

6200 3.232348*06

6400 3.339065,06

6600 3.449405*06
6800 3.561690*06

?000 3.677640.06

7200 3°?96605*06

7400 3.926560,06

7600 4.063300.06

7600 4.211395,06
8000 4o374950.06

0200 4.556645*06

8500 4.76|340*06
6600 4.996245,06

6000 5.261370*06

9000 5,S6960ff*06

9200 5.02670_*06

0400 6.34|405.06

9600 6.623365,06

9600 ?.363200*06

10000 8.032425*06
10200 6.763270*06

10400 0.648565_06

10600 1.064135-03

10800 1.173445,03
11000 1.305955,03

11200 1.450655.07

_1400 1.61_220*03

11600 1.790804,07

11800 1.906190.07

12000 2.196990*07

12200 2.421150.07

12400 2.655648*0?

12600 2.69654_*03

12600 3,130308*0?

13000 3.3700T0.07

13200 3.611130,07

13400 3.831350*0?
13600 4.036525-03

13600 4.224514*0?

14000 4.396330*0?

14200 4.545988.07

14400 4.680220_07

14600 4.798374,07

14800 4.902020*0?

15000 4.99_694_07
15200 5.07R690"07

15400 5.143010*07

15600 5,205300*07
15000 5.260840,07

16000 S.310720.07

16200 5.355808,07

16400 5.393110-07
16600 5,435074*0?

16800 5,470318.03

17000 S.503298,07

17200 5.534360*07

17400 56563010_07

17600 5.592110_07

17600 5.619228*0?
18000 5.645414_07

JLrA N(

11M3

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0,00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000
0.00000

0.00000

0.00000

0.00000

0.00000

0.00001

0.00001

0.00002

0.00004

0,00008

0.00013

0.00022
0.00035

0.00054

0,00082

0.00123

0.00130

0.00256

0.00361

0.00500
0.00602

0.005|?

0.01216

0.01593

0.020?0

0,02655

0.033?2

0.04241

0.05286
0.06533

0.00_00

0.00339
0.11754

0.14061

0.16744

0.19362

0.23150

0.26009

0.31026

0.35476

0.40204

0.45142

0.50200

0.552??
0.60263

0,65055

0.69561

0.33314

0.?7466

0.80801

0.83?25

0.66251

0.68414

0.90240
0.91790

0.93009

0.94109

0.95099

0.05860

0.96496

0.9?027

0.9?4?2

0.9?844

0.90157

0.06420

0*98642

0.06630
0.98069

0.99124

0.99239

LOG(PRESSURE)=

R0 CP

K_/W3 NNI(KG 0_6)

4.80330"01 5.20460,02

2.40160-01 5._0405,02

1.80110"01 5._0405"0_

1.20080-01 5.20400*02

9.60660°02 5.20485,0_

6.00550-02 5.20400*02

6.66165-02 5._0460.02
6.00410"02 5._0465.02

5.33700"02 5.20405*02

4.80335-02 5.20460,0_

4.00270"02 5.20485.02
3.4|095-02 5.20405,02

3.00210-02 5.20460*02

2.66850"02 5.20450"0_

2*40160*02 5.20405_0_

2.40400.07 2;I8330*02 5.20484,0_ -1.29165"20

6.1633@*00 2.00145"02 5.2048#*02 "0.43000ol8
1.53030,10 1.06745-02 5.20485,0_ "2.43525"15

1.08410,11 1.71550-02 5.20480,0_ "2.78560"13

1.75970,12 1.60115-02 5.2048_*02 -1.66050"11

1.22765,|3 1.50105-02 5.20400,02 -3.64170-10

6.72220,13 1.41270"02 5.20455*02 "4.41610-09

3.04960,14 1.3342ff-02 5.20400,02 -3.06560-08

1.10100,15 1.26405-02 5.20455_0_ -2.60040o07

3*90700"15 1.20000"02 5o20400,0_ e1._4065_06
1.20520,10 1.1436#'0_ 5.20498*0_ "7.46630"06

3.20030,16 1.09175-02 5.20528.02 -3.13250"05

0.23065,16 1,04425-02 5.20570_0_ "1.|5935"04

1.90905,13 1.00070"02 8.20695,0_ "3.64490"04

4,14120.13 0.60654-03 5.20915+02 -1.15790"03

0.46740,13 9.23?05*03 5.21340"02 *3.20190"03

1.64260÷16 8.8949_'03 5.2209@*0_ "8.20740"03

3.04020,10 8.57710"03 5.23370.0_ -1.06618-0_

5.39400,10 6.26120"03 5.25460,0_ "4.43204"02

0.21660,16 0.00408-03 5.26735.0_ -9.66295-02

1.52150.19 ?.74620-03 5.33710*02 -1.92295-01

2.43460,19 ?.50355"03 5.41068,0_ "3.73660"01
3.70760+10 7.27524-03 5.51655.0_ -6.97164-01

5.74170,19 7.0590P'03 5.66518,0_ "1._5340,00

6.50060+18 6.05624"03 5.66948.0_ "2.13800,00

1.23150,20 6.66315-03 6.14450÷02 -3.66064,00

1.74668.20 6.4?930-03 6.50850-03 "6.00400*00

2.43740,20 6.30400"03 6.96180*02 "8.56700*00
3.339?0*20 6.13590-03 ?.58000*0_ -1.40758*01

4.50350,20 5.97420-03 0.35350,02 "2.26005,01

5.58295*20 5.01000"03 9.3075@*0_ "3.3da02@*01

?.0373_20 5.66020_03 1.04825,03 "4.69505,01

1.01330,21 5.$160#*03 1.19125,05 o0.00775,01

1.29390-21 5.3725e-03 !.36340,03 o5.82115,01

1.63265,21 5.2_675"03 1.56670+03 "1.35460*02

2.03690_21 5.0_59_-03 1.61135-03 "1.03720,02
2.51300,21 4.04325-03 2.09530,0_ "2.45108_02

3.07015_21 4.79994-03 2.42405,05 -3.22060,02

3.71160,21 4.65520-03 2.00408.05 -4.16550,02

4.64240,21 4.5087ff'03 3.23610"03 o5.30560_02

5.26570,21 4.36005"03 3.?2410,03 "6.65625_02

6.16160,21 4.20835*03 4*_6045"03 -0.22480*02

7.16020,21 4.0540P'03 4.07100+03 "1.00000_03

6.27920*21 3.89650"03 5.52844.03 "1.10030,03

9.44530.21 3.74040-03 6.23225*03 *1.41468_03

1.06730.22 3.$6105-03 6.07160,03 "1.64280,03

1,19460.22 3.4214P'03 7.72680*03 -1.87728,03

1.32425,22 3.26280*03 0.47698*03 -2.11035_03

1.45360,22 3.10678-03 0,16960.03 "2.33370,03

1.50000÷22 2.95a65"03 9.0224ff*03 "2.53848,03

1.?02_5.22 2.6001P-03 1.03355,04 -2.71555,03

1.61705,22 2.66090"03 1.06660,04 "2.65920"03

1,92165.22 2.53000"03 1.00400,04 "2.96320.03

2.01430.22 2.41670"03 1.07374-04 "3.02518.03
2.09540,22 2.30554"03 1.04958,04 "3.04520,05

2.16310,22 2.20460-03 1.00110.04 °3.02608*03

2.21780+22 2.11405-03 9.36190*03 -2.9?225*03

2.26030*22 2.03315-03 0.59440*03 -2.88930,03

2,29150*22 1.96135-03 ?.76125,03 -2.?6480*03
2.31260*22 1.89760-03 6.91090*03 -2.6641P*03

2.32485*22 1.84115o03 6.08360*03 -2.53310*03
2.329?0*22 1.7909_*03 5.30900*03 -2.39690*03

2.32845*22 1.74615"03 4.60470*03 "2.25930*03

2.32200*22 1.70590"03 3.07958*03 "2_12340,03

2.31155*22 1.66968-03 3,43468*03 -1.99155,03

2.29?65*22 1.63655-03 2.96658*03 "1.86495"03

2.28160.22 1.60620*03 2.56060_05 -1.34435,03

2.26365*22 1.53825-03 2.23360+03 "1.63130-03

2.24400*22 1.55220-03 1.95275"03 "1.52500_03

2.22350*22 1.52708"0] 1.7103P*03 -1.42570_03

2.20210*22 1.50490-03 1.52320,03 -1.33325÷03
2.18035*22 1.46320"03 1.30105,03 "1.24720,03

2.15620*22 1.46250-03 1.22630.03 "1.16745-03

2.13600*22 1.44260"03 1.11430,03 "!.09340,03

2.11370*22 1.42405-03 1.02124.0] -1.02400,05

2.08150*22 1.40565-03 9.43700*0? "9.61400*02

2°06948*22 1.36845-03 6.79055*02 "9.0255_*02

2.04760*22 1.37155-03 0.25040,0_ -8.40060*02

2.02600*22 1.35520-0] ?.?9820*02 "7.97510,02
2.00460*22 1.33935"03 7.41_80,02 "?.50630*02

(NE_TON/_2)

O_INUS

R[C/S[C-[L(CTSON
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THERMODYNAMIC DATA FOR EQUILIBRIUM ARGON LOG(PRESSURE)= 5 (NEWTON/M2)

T H ALPA
KELVIN NM/KG

100 5,204778+0" 0,00000

200 1,040059÷05 0,00000

300 1,561439+05 O.O00OO

400 2,08191@*05 O,O000O

500 2.602399+05 0.00000

600 3,12286@÷05 0.00000
700 3.64334#+05 0,00000

800 4,163828÷05 O,O000O
900 A,68_9#÷05 0,00000

1000 5,204778+05 0.00000

1200 6.24572#+05 0,00000

1400 7.28668#÷05 0,00000
1600 8.32763m÷05 0.00000

1800 9.36850m+05 O,O000O
_000 1.040959+06 0,00000

2ZO0 t.tASOSP*06 0.00000

2400 1.24914#+06 O.O00OO

2600 $.3532"#+06 0.00n00

2800 1,457348÷06 _,OOOO0

3000 1.56143m+06 0,00000

3200 1,6_553m÷_6 0.00000

3400 1.7606_#÷06 O.O0000

3600 1.87372m+06 0.0_000

3800 1.97781m÷06 O,O0000

4000 _,08191P÷n6 O,OOnO0

4200 2.18800#÷06 0,00000

4400 2.29010P÷06 O,OOO00

4600 2.3ga208+_6 O.OOOOO

4800 2.498318÷06 0,00000

5000 2,60_428÷06 O,OOqO0

5200 2.70656m÷06 O.O00OO

5400 2,81073#÷06 O,O00qo
5600 2,91498#÷06 0.00001

5800 3.01933#÷06 0.00001

6000 3.123868+06 n. O0002

6200 3.22_66J÷06 0.0000,

6400 3.333878÷06 0.00007

6600 3.439684÷06 0.00011

6800 3.5463,m+06 0.00017
7000 3.65_108÷06 0.00026

7200 3.76364m÷06 0.0U039

7400 3.87526P÷06 0,00057

7600 3.089708÷96 0.00081

7800 4.107818÷06 O.OOlta

8000 4.230588+06 0,00158

8200 ,.350228÷06 0.00216

8400 ".495139÷06 0.00290
8600 4.630068+06 0.00385

8800 4.795638÷08 0.00505
9000 4.96430m+06 0.00655

0200 5.148478÷06 0.00840

9400 5.35091m+n6 0.01067

9600 5,574738+06 0.01342

9800 5,823388+06 0.01674

10000 6.10067l+06 0,020_0

10200 6.41075#÷06 0.02540

10400 6,758138÷06 0.03093

10600 7.1,7674+06 0.037_0

10800 7.584579.06 0.04493
11000 B.O7435#÷n6 0.05363

11200 8.62284P÷06 0.06362

11400 9.236058+06 0.0750_

11600 9.920198+06 0.08801

11800 1.06815m+07 0.10?67

12000 1,152628+07 0,11913

12200 1.24601m+07 0.13753

12400 1.3.886m÷07 0,15797

12600 1.461644÷07 0.18053

12800 1.58469_+07 0,20529
13000 1.71822m÷07 0.23_27

13200 1.862224+07 0.261"5

13400 2.01646m÷07 0.29277

13600 2.18042#÷07 0.32610

13800 2,35326J÷07 0,36124

|4000 2.53382m÷07 0.39792

14200 2.720598÷07 0.43880
14400 2.91178m+07 0.47447

14600 3.105334÷07 0.513"8

14800 3.299078÷07 0.55236

15000 3.49074#÷07 0.59061

15200 3,678204÷07 0.62777

15400 3ofl59478÷07 0.663"2

15600 Q.03280m*07 0.69721

15800 4.1971,8÷07 0,72487

16000 _.351304÷07 0.75821
16200 4,4948.P+07 0.7851.

16400 4,627_9e÷07 0.80963

16600 ".749684+07 0.83173

16800 _.86149m÷07 0.85154
17000 A.963590÷07 0,86019

17200 5.05665m÷07 o,88484

17400 5.19142m÷07 0.80866

17600 5.218678÷07 0.91083
17800 _,28015m÷07 0,92152

18000 5.35361m,n7 0,93089

NE RO C# 9UINUS

1/_3 _G/W3 NWI(KG OrGI REC/SEC'ELECTRON

4.8033m÷_0 8,2048@÷02

2.40160÷00 5,2048#÷0_

1.60118+00 5,20488÷0_

1,20088+00 5.2048#+02

9.60669"01 5,20488+0_

8.00558-01 5.2048P÷0?
6.8618m-01 5.20488÷0_

6.0045m-01 5.20488÷02

5.33708-01 5.2048P+0_
4.80338-01 5.20,8#+02

4.00278-01 5.2048#*02

3.43098-01 5.20481+02

3.0021_-01 5.20488÷07

2.6685m'01 5.20488÷0?

2.4016_'01 8.20_88÷02
7.85508÷07 2.18338-ni 5.2048#÷0_ -1.29168-19

2.58158+09 2.001,#-01 5.2048@÷0_ -0..3008-17

,.96708÷10 1.8474_-_I 5.2048_÷07 -2.43528-14

6.27438÷11 1.71558-01 5.20_88.02 -2.7838m-12

5.65958+12 1.60118-01 5.2048m+02 -I.66058-I0

3.88258÷13 1.50100"01 8.2048#÷0_ "3.8_178-09

2.12588+14 1.4127m'01 5.20_8_÷0_ "4."1618"08

9.64428÷14 1.3342_-01 5.20"88÷0_ -3.8658m-07
3.73468+15 1.26408-01 5.204RP÷0_ "2.600AP'06

1.2640#÷18 1.2008_°01 5.20488÷07 "1.54088-05

3.81138+%6 1.14368"01 5.20_88÷0_ "7.4867#-05
1.0402#÷17 1.0917_'01 5.2049#÷0_ "3.1325#'0"

2.602_@÷17 I*0442J'0% 5.20518÷0_ "I.1593#'03

6.03678+17 1.0007#-01 5.20848÷0_ -3.A449_-03

1.3096#÷18 9.6066m-02 5._062#÷02 -1.15799"02

2.67778+18 9.23718"02 5.20758÷0_ -3.2019m'02

5.19_48÷1_ 8.89499-0_ 5.20998÷0_ -8.20758-02

9.61429+1" 8.5772_-02 5.2140_+0_ "1.96628-01

1.70619÷I9 8.281,#-02 5.22068+0? -4.43308-01
2.91478÷1_ 8.00538-n2 5.23108÷02 -9.4639#'01

4.81189+19 7.74698-02 5.24688÷02 "1.9232#+00

7.70068+19 7.5046J-02 5.27029÷02 -3.73778+00

1.19808+20 7.2769m-0_ 5.3039_÷02 -6°07498÷00

1.81648+20 7.0625#-02 5.35129÷0_ -1.2543#+01
2.689_@÷20 6.86018-02 5._163m÷02 -2.1_058+01

3.89758÷_0 6.66861-02 5.50408+02 -3.67489÷01

5.536,8+20 6.48738-02 5.6200_÷02 -6.0187#+01

7.72139+20 6.31508-_2 5.77008.02 -0.60159÷01
1.05878÷21 6.15108=02 5.98448+0_ -1.49R94÷02

$.42909÷21 5.99"6J-02 6.2048_÷07 -2.2755#÷02

1.90088÷21 5.8451_-02 6.51358+02 -3.3017#÷02

2.49418÷21 5.70178-02 _.88898+07 -4.9576#*02

3.23128÷21 _.563"8-07 7.34628+0_ "7.1152#+02

,.13647÷21 5.43098-02 7.8974#÷02 -1.00388.03
5.23649.21 5.30238-02 8.5556_÷0_ "1.39358÷03

6.55939÷21 5.17758-02 9.3344#÷0_ "1.90528+05

8.13499÷21 5.0559_-n2 1.0248#÷03 -2.8675_÷03
9.99428÷21 _.93728-02 1.13129÷03 -3.41308÷03

1.21608.22 ,.8206m-_ 1._5408÷03 -4.4780#÷03

1."6919÷22 4.70594-n2 1.39508÷03 -5.A02_#÷03

1.75018+22 ,.8025_'02 1.55_68÷03 -7.,279#+03

2.0898#+22 4.4800#-02 1.73749+0_ -9.3_938÷03

2.46"i#÷22 ,.36808-02 1.98218÷03 -1.17608÷04

2.88,28÷22 ,.2563J-02 2.17099÷0_ °1.45548+04

3.35208÷22 ,.1""4m-0_ 2.42_28÷03 -1._819#÷_4

3.86908÷22 4.03218-02 2.70618÷03 -9.15878+04
4.43568÷22 3.0193_-n? 3.01,58÷03 -2.5882#÷04

5.05179÷22 3.8088m-02 3.3506#÷03 -3.07148÷0_

5.71618÷_2 3.69168-02 3.71,58+03 -3.80789÷04

6.4264#÷22 3.57668-N2 4.10528÷03 -4.10498÷04

7.17928÷22 3._6118"07 4.52108÷03 -4.8282#÷04

7.96088÷22 3.3_52m-0_ ,.9588#÷03 -5.8009#÷04

8.79249+22 3.2202#-02 5.41438÷03 -6.2037#÷04

9.6307#÷22 3.1134m'_2 5.88168+03 -6.42518+04

1.05048+23 2.908,4-02 6.3526#÷03 -7._516#÷04

1.1375#÷23 2.88478-02 6.8176#÷03 -8.3679@+04
1.22438÷23 2.7728#'02 7.2648#÷03 -9.0577@+04

1.30998+23 2.6633m-02 7_6806#÷03 -9.7045#÷04

1.39319÷23 _.55708-02 8.0504#÷03 "1.0293_÷08

1.47298+23 ..45438-02 8.35918+03 -1.0807_÷05
1.54847÷23 _.35598-_2 8.59258÷03 -1.1237#÷05

1.618_#-23 2.2623#-02 8.73_6#÷_3 "1.1_730+05

1.68348÷23 2.17378"02 8.78858÷03 -1.18108÷05
1.7417F*23 2.0907#-n2 8.7382m÷03 -1.19478÷05

1.70328÷23 2.0132_-02 8.5887#÷03 -1.1088#÷05

1.83819+23 1.94134-02 8.34678÷03 -1.19338÷05

1.8761#_23 1.07519"02 8.0234#÷03 -1.17968÷_5

1.90778+23 1.8142_-02 7.6339#÷03 -1.15878÷05

1.93309÷23 1.7584#-02 7.19558÷03 -1.13158÷05

1.95258+23 1.707_8°02 6.7259_÷03 -1.09648÷05
1.96689.23 1.6600#°02 6.24_08+03 -1.06348+05

1.97638÷23 t.61858"02 5.75898÷0_ "1.02"7J÷05

1.98168÷23 1.57978-02 5.2888@÷03 -9.84118÷0_
1.9832#_23 1.54428-02 ,.84108÷03 -0.4258m+0,

1.98169÷2_ 1.51168-02 _.42209÷03 -9.0076#÷0,

1.97728÷23 1._816#-02 _.03888÷03 "8.5922_÷04

1.9706#÷23 1.45398"02 3.6841#÷03 "K.1841#÷04
1.96_09+23 1.4282m-02 3.36728÷0_ -7.78659+0,

1.95189÷23 1.4043m-02 3.0839#÷03 -7.40208+04

1.94038÷23 1.38208"02 2.8323#÷03 -7.0322m÷04
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THERMODYNAMIC DATA FOR EGUILIBRIuM ARGON LOGIPRESSURE)= 6 (NEWTON/M2)

T N ALFA

KELVIN N_/KG

100 5.20_77P_A 0.00000
200 1.0=005@+05 0,00800

30_ 1.561A3P_5 0,00000
000 2,0@101@+05 0.00000

500 2,60230@÷05 0,00000

60C 3°12286@_05 _,00000

?00 3,6_33A_÷05 _,00000

_0_ A°1638_÷05 0,00000

900 _°68_29_0_ 0°_0000

%000 5,20a77_÷05 0.00000

12n0 6,2A57_P÷05 _.00000
1000 7°28668@_05 0,00000

160n B,32763_÷05 0.00_0

%800 9.36_5Q_÷05 0.00_0

2000 1.0A095_÷_6 0,00000

2200 I,IASOSP÷_6 0,00000

2000 1,2a914P_06 0°00000

2_00 1.353_AI+06 0°00_00

2800 I.a5_30_06 0,00000

3000 1.56Ia3_÷_ 0.00000

3_00 1.66553_6 0.00000

3AO0 _,76962_÷0_ 0.00000

$600 I,_]T_÷06 0,00000

3800 1.97781Q÷06 _.00000

A=O0 2o_9019e÷08 0,00000

4800 2._9_20_÷06 0.00000

5000 2,60_A0@÷_6 0.00000

5_00 2.7365_m÷0_ 0.00000

5AO0 2.8%063_÷06 0,00000
5600 2o01A77@_6 0,00000

5800 3.018_0m÷06 0,00000

6000 3,123_8_÷_6 _,O0001

0200 3._750_+06 0.00001

66C0 3o_365R_+06 _,DO003

6BDO 3.SAIAO_Ob 0.00005

700_ 3.6_677_÷_6 0,00008

7200 3,75_56P_06 0,0001_
7_0 3,8590)_06 0,00018

7600 3,966AO_÷_b 0°00_6

7800 _,0709_o÷06 0,00_]6

8000 _.18A_3Q÷06 0.90_50

8_00 _.A109A_÷06 _,00092

8800 A,6_8_?o_Ob 0°00160
9000 4,7778a_ 0,00707

9_00 5,03746_+06 0°00337

0600 5,179a_÷06 O,O0_A

9800 5°320_6 9,005_9

10000 5.08@_31÷06 0,00655

10200 _,65_@÷06 0.00803

10_00 5°83857e_6 3,00079

10600 6,033030÷06 _,01ISA

11000 6,A6096_06 0,01_08

I%_00 6.71A3_÷08 0,02016

116¢0 7._6060_*_6 0,02_03

11800 7,58_I?@_06 0°03762

12000 7,92631_÷n_ 0°03_92
12260 B,29_7_÷06 0.0_]87

12A00 8.7038_06 0,05052

I7600 _,Ia_59Q÷06 0°05792

130_0 1,010_0m÷_7 9,07_30

t3200 1,0_06a_÷_7 0,08535

13A00 I,_31_3_07 0,00638

I_600 1.1975A_07 0,I080a
13_00 1.26862_07 _,12160

10000 t.3_51_7 _°t358_
10200 I°_27_5_7 n.15135

10A0_ 1.515221÷07 O, Ib_O?

10600 1°60_I_÷07 _,_BSO]

14_00 1._00_0_+07 0.20508

%S000 1,81536m+_7 0._%A9

15200 1.02_63e+07 0o2A_12

15A00 2,0ASO1_÷n7 0o_6_97

15600 2,1700t@÷07 0,_9307

12800 2,_096_@_07 0.3190_

16000 2,a30A1_O? 0,3_I_

16200 2.5738aI÷07 0°37711

16_0 _,71732_÷07 0,39_82

16600 _,86_170_7 0°_281_

16800 3°01358o÷07 0,05_?

17000 ]°_6A7_÷_7 0,_8585

17200 3,31666_+_7 0.51a8_

17_00 3°0_÷07 0.50373

17@00 3°767_Q_07 0,60021
18000 3,01393_÷07 _.62_A6

N£ RO CP

1/w3 KG/W3 NM/CKG _6)

0,B033_÷01 5.20A8_÷0_

1°601t0÷01 5,_00BP÷O?

9°6066_÷00 5o20_8@_07

8.0055_÷00 5°20A8_0_

6.86181_0 5°_008P÷0_

_,0027P_00 5.20ABP_O?

3,0021_÷00 5°20a8_÷07

1.98_1@÷17 1,7155_00 5.2008_÷0_ -_.7838_-11

1.T89_@+1] 1.6011_00 5,20_8_÷0_ °1o6605_°09

6.7227@÷14 $,A12?_00 5,2088P_0_ -A.4161_-07

1,1810_÷16 1._680!+00 5o204_0_ -2,_904P-05
3.9970_÷1_ 1,_0080+00 5,_OaBP÷O? -I,SAOBP-O_

1.205_÷17 1.1036_00 5,20AB@÷0_ -7,a667_-04

3.2893@_17 1,0917_÷00 5.20_8_÷0_ °$.13_5_'0_

1°9090@÷18 1°0007_÷_0 5,2050P_0_ -].8489_-0_
4,1812@÷18 9.60660-01

8,46750÷18 9,2371_-0 ]

1.6A?6P_19 B._050_°01

3,0aD_@÷19 Bo5773P-01
5,3951_÷1_ 8,2e15_-01

1,5_17@_20 7.7_71_-01

_.A35_÷2C 7,5050_-01

3.7887_÷20 7°2775_-0

5.TA_Sa÷2C 7.063]_-0

@.506Q@_20 6,8613_-0 ¸

1°2328_÷21 6,6700J-0
1.T51_÷_1 6,4_08_-0 ¸

2,4431_÷21 6.3185_°0 ¸

3,350_÷21 _.1558_-01

5,2052@_07 -1,1579P-01

5°2056_*07 -3,_019@-01

5,2181P÷0_ -1o0_33_01

5,22_5_07 -3,7380_÷0!

5.3361_÷0_ -6,023_+02

&.523_@÷21 6,00110-_1 5,52_3_÷0_ -_,_B08#_03

6°0t07@÷2_ 5°B537_-01 5.blB6_02 -3,_O_P_O]

7.9027_÷21 _°7130_-01 5,7373P_07 -_,977]_÷03

1°02_P÷2_ 5.5_B0_-01 5.SBIgP_O_ °?,I527_0S

1,3126a_22 5,8_96m-_ 1 6,056$_0_ -1,010B_÷04

1,6633_÷_2 5o3260P-01 6.2_8_P_0_ °1,_060P_04

2,0B6_÷_ 5,2071_-01 6,510B_07 "1,02_2P÷04

8,7118_÷2_ a,??2Om-O! 7.971BP÷0_ -_,9688_0_

5,660t_÷2_ a°6716_-0! 8,RB09_O? -_,6Q0_÷04
6.?A99P_2_ 0,573B_°01 0,05B1_÷0_ -9.8055_04

t,_786_÷_] a.1155_-01 1.3151P_03 -2.86BaP÷O5

I,6_68P÷23 a,O2B3_-01 1,a2AB_+03 -3,0651m_05

1.930_@÷_3 3.94_0_-01 1.5009_÷03 -4,1532_0_
_°2053@÷_3 3,8565_-01 %°6759_÷0] "_,OaOl_*O_

2.A953@÷2] 3,7717_-0! 1.B182_÷03 -5,B3_B_*OS

3.1A9I_÷23 3,6033@-01 _o137B_÷0_ -?,05BIP_O_

3,5133P÷_3 3,5196_-_1 _.3157_÷0_ -9.19_0_05

3,902_P_23 3,A361@-01 2,5057_÷0_ °1°0561_÷06

0,315_@÷23 3,3527_-01 _,70_0P÷03 °1,_0_58÷06

a,7522@_23 3o2690_-01 2o9220_0_ "1,36A6_÷06

5,6912@÷23 3,1033¢-0

_,1o03@÷23 3°0205_-0

6,?063¢÷23 2.9379_-01
7._3bo@÷_3 _,85589-0

7°779_P÷23 _,774t_-0

B.33098_3 2.6931_-0

1.05_0@÷28 2,_795_-0

1,1617_2a ?.2318P'0]

1.2617@+28 _,0923_-0

1.3083@÷2a _,0261_-0

%.3523@_2_ 1,9625e-0

1°_315P÷2_ 1.8035_-0

1._660_÷_a 1,788_m-0

1,A981@÷2_ 1,_35_'0

1.5_65_2_ 1.6863_-0

3,3800P÷0_ -1,7178_*06

3.630A@+0_ -1,9089_0_

4°lASOP_03 -2,31_8_06

5.06_2_÷03 -3,77AT_06

6,3700_÷0_ "8,0831_÷06

6,656b_÷03 "0,_897_+06

6,79?1P÷0_ °a,aS]Q_06

OWINUS

REC/SEC-ELECTRON
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PA[SSUR[ (N/M2) IS
10000

LC$_PEESSU,<E)= 4

T[MP VISCOSITY A_EIOtFF TOTCOND R[ACT [LECTR pRANOTL OA& QA| 0||

KELVIN KG/N'S[C U2/$_¢ NM/M°$[C'O£G FgACTXON$ u2 M2 M2

100 9,3628"06 1,3649"05 7.6849-03 0,0000 0.0000 0.6341 5,63P*|9 1*949"1B

200 1.$85'°05 8,0?89*05 t.2929"02 0,0000 0,0000 0.6385 4i708°19 ],839"18
300 2,1588*05 ?,?499"05 1.T529°02 O,CO00 0,0000 0,681] 6.230°19 1.?29°18

800 2.6858o05 1,221_°01 2.1239°02 0,0000 0,0000 0,6830 3_939°19 ],_]P°1$

SO0 3,1818°05 ].2389o08 2,5699"02 0,0000 0,0000 0,6444 3_09"]9 1,T09°18
600 3,6588°05 2.320_°04 2.9460"02 0,0000 0,0000 0,6656 3.530°19 1.6_0"18

700 4o1088°05 2,961_'04 3,3079"02 0,0000 0°0000 0,6466 3_$9_'19 ]*$_P°|_
800 8,$428°0_ 3,659_'04 3,6558°02 0,0000 0,0000 0,68T4 3.288"19 1,639°18

900 6,9738"05 6,6100°08 3,9939°02 0.0000 0,0000 0,6482 3,150°1_ 1,620"18
1000 S,$8?P*05 S.211_°04 6.32]9"02 0,0000 0.0000 0.6689 3_090°19 1*600°1_
]200 6,]588°05 6,95T0°08 6,9540°02 0,0000 0,0000 0.650] 2*959*19 1,5_9°18

1600 6,95T8*05 8.8549°01 5,5629°02 0,0000 0.0000 0,_511 2,530°19 1°_69"18
1600 ?,?008°05 1,098_'03 6,142_°02 0,0000 0,0000 0,65]_ 2,?69°]0 1,54_°]8

1800 $o6218"05 1,326_°03 6,715_*02 0,0000 0,0000 0,652? 2_66_°]9 ].52_°1_
2000 9,123_o05 1,565_'03 _.2629"02 0,0000 0o0000 0,6556 2,5_°1_ 1o5]_°18

2200 9,8099°05 1.820_°03 _,806_°02 0,0000 0,0000 0,6_80 2_$2_°]9 ],509°18
2600 1,048m'04 2,090_'03 8,33_P-02 0,0000 0.0000 0.658_ 2_66_-19 1,6_°18

2600 1,]|98°04 2,323_°0] 8,8689°02 0,0000 0,0006 0,6551 2_1_°19 1.65_°15 9,389"16

2800 1,1T88"04 2,669_°03 9,3549-02 0,0000 0,000_ 0°_556 2,3_9°I_ _,8T8°18 ?*529°16
3000 1*2628°04 2.9_9°03 9°850 P°02 0,0000 0,00]0 0,6560 2,]_9°19 1.669°18 6*129"_6
$200 1,304_'0_ 3._00_°0_ 1,034_°01 0,0000 0,001_ 0,656_ 2t29_°19 1,658"1B 5,05_°16

_400 1,365_'04 _,6339*03 ],082_'01 O,CO00 0*001_ 0.656_ 2,25_o19 1,66_°1_ 8*229o16
3600 ]*426_'04 3°979_°03 1,1299°01 0,0000 0,0020 0,65?2 2,229°_9 1*63_°18 ].529°_6

3800 ].4868°04 6,336_°0_ 1,1269°01 0,0000 0,0024 0,65?6 2_198°|9 1,63_°18 3.04_°16

6000 1,565_°04 8,?06_'03 1,222_°01 0,0000 0,0029 0.65?9 2°16_-19 1.42_°18 2.629°16
_200 1,60_8*04 _*083_°03 1,268_'01 0°0000 0°0035 0,65_3 2,158"19 1°4_8"18 2°27_'16
8600 1,_b19"04 _,_?]_°03 1,3139°01 0,0000 0,004] 0,6_6 2,10_'19 1*_19°]_ 1.989"16
6600 1.2189°04 5.8249"03 1,357_°01 0,0000 0,0068 0,6589 2 0$_'1_ 1°409*19 1° 269°16

1°609"184800 1o?259"06 6,2B_P'03 ].8099°0] 0,0001 0,0055 0,65_8 2_069"]9 1,569°16
_000 ],8318o04 6,706_°03 1.661_'01 0,0002 0,0]09 0.6526 2_069"19 1,3_°18 1.3?9°16

5200 1,886_°08 ?.138_*03 1,920_°01 0,0008 0°0209 0°686? 2,02_'19 1,$_8°18 1.229°16

5600 1,961_°04 ?,_299°03 1,59_°0t 0,0002 0,03?0 0.63?0 2t00_°19 1*38_°18 _,100"_6
5600 1.9959"04 _°0309°03 1,67?P°01 0,0012 0.060? 0._227 1,98_°19 1*$89*1B 9,$29-1?
5800 2°049_'0_ 8,491_'03 1.782_'01 0,0021 0,0919 0*60_0 1.96_*19 1.$?_°15 $,939°_?

6000 2,101_°01 9,961_°03 1,9089*01 0,0032 0.1201 0,$823 1.949o19 1*328°18 8.11_°1 ?

6200 2.1549"0_ 9,441_°03 2,0_4_°01 0,0089 0°169_ 0,_595 15929°19 _,3_P°18 ?.80_°17
6400 2,20$P'04 9,9308"03 2*2129°01 0,0075 0.2096 0.5382 1.918"|9 1,369°18 6.26_'12

6600 2,255m*04 1°043_'02 2,3928"01 0o0108 0°2_?? 0°_200 1°59_°19 1°369°1_ 6o259"12
6800 2,3069*0_ 1,0949"02 2,_?29°01 0,0145 0,_822 0,5063 _89°]9 1,359°18 _*?1_°1?

?000 2,3509*08 1*145_'02 2°??09°0! 0,0199 0,3120 0,49?9 1_829"19 1,159*1_ _.27_'12
?200 2,3999"0_ 1*10_#°02 2,921_'01 0,0266 0,$39? 0,495_ 15_$8°19 1°_$9°18 4°8?9°12

?400 2°_359°0 & ],251_°02 ]°1809°01 0°0351 0*3630 0*9983 1°848o19 1*$4_'18 4*529*12
2600 2°4?19"06 1.3059*02 3°3989°01 0,0455 0.393_ 0,50?6 1.83_°_4 1°]_8*_ _ a°20_'%?

?800 2°_01_°06 ],3609°02 3,6289"01 0,05_0 0,4006 0°5230 1t819°19 1,_49"1_ 3,919"12
8000 2,5249°06 1,6_69"02 3,8?28-01 0,0?28 0*4154 0°5446 1°80_°19 1°338"18 3*658"12

8200 2,_399°0_ 1._239°02 6°132 _°0 ] 0,0899 0,42T9 0,$?18 ]_99°19 1°339°$8 3°61_°_ ?
8600 2,563_°09 1°5300"02 _,4109°0] 0o1096 0*4]$? 0,6043 ] _28_°1_ 1.338°18 $.20_°12

_600 2,5369°0_ t,589_'02 4,?099°01 0o1312 0*4465 0°6410 1°??P°19 1°_39°1_ 3°009"12
8800 2,_119"04 1,6_89°02 5,0318°01 0,1560 0°4529 0,6805 1,26_'19 1.|2_*_ 8 2, 829"12

9000 2,673_°0_ 1o7099"02 S,3289°01 0,1825 0.452_ 0°7213 1575_°19 1,329"18 2,669°1?
9200 2°615_'04 ],2699*02 _°T53_'01 0*2106 0,8606 0°2613 ].269*19 1*_2_°18 2°_1_°1 ?

9600 2,385_*0_ 1*8309*02 6.1569*01 0,240_ 0*4_21 0°?984 1°7_9"19 1°319°18 2,3_'12
9600 2,2_69"0_ 1*6939"02 6.5_9_°01 0,2?03 0,_62_ 0,_302 1,228°]9 1,_19"15 2,2_9"_?

9800 2,1509"06 1,9569"02 ?,052_'01 0°3006 0*_6t? 0,_549 I_219°19 ].319°18 2.139"12

10000 2°030_°0_ 2,0209*02 _.5_39°01 0°3303 0,6602 0,_?09 1,?0_'19 1o319°18 2*029*1?
10200 1,8989°04 2,065_°02 8°0609°0] 0.3%8? 0.656_ 0*822_ _.699o19 1,309*t8 1.92_'17

]0600 1,?58_°0_ 2,1509°02 8°5958°01 0°_8_0 0°9563 0*5?33 1.6_8"19 1,308°18 1,53_'I?
]0600 |*613_°04 2,_169°02 9°_a0_'01 0°_0_6 0,4_99 0*8598 1.679"19 1.30_*18 |*759°1 ?

10600 1.9669°04 2,283_°02 9,$809°01 0,9258 0*6564 0°8323 1,62_°t9 1*30_°]8 1°629"12
1]000 1,321_°04 _°3519°02 t,0209+00 0°6449 0*4_ 0.80?3 1,6_o1_ 1,309°18 1.609"12

11200 1,180_°0_ _.419_°02 1o0629÷00 0*45_6 0,4_8_ O°?T$O 1,65_°19 1,299"_8 1°539"17
11800 1°06?_'0_ 2.488_'02 1,1089+00 0,4_31 0.6651 0.2300 ]_64_°]9 t.29_°18 1°_29"12

11600 9,2169°05 2°_58_'02 1°160_+00 0.8690 0*4?69 0,6854 ]°64_°19 1,299°]8 _,a]_°|?
11800 8,065_°05 2,6299"02 1,161_+00 0,Q_89 0*4_91 0,6384 ]_63_°19 1,2_9*1 $ 1.36"°_ ?

]2000 ?,020_°05 2°_00_°02 1°1209÷00 0,84?2 0*_083 0°S595 1,62_°19 1,299°18 1,319"12

12200 6,0849°05 2.272_'02 1.166_+00 0,425? 0.533_ 0.5394 1°618"19 1,259"18 1°269*]7
12800 5,2_69"0$ 2,8459°02 I,1508.00 0,4032 0.564_ 0,_883 1.61_'19 1.289"18 1,228"1?

]2600 6,533_'05 2,918_'02 1,12_4÷00 0,3210 0.6002 0°6367 1,609°19 $°2_°_8 1,189*1?

12800 3,908_*05 2,9929°02 1,096_00 0,3329 0*642_ 0.384_ 1._99"]9 _°289°]8 1.16_°_7
t)O00 3,376_°05 3°062_°02 1°061_÷00 0,2906 0*6_8_ 0,3336 1°59_°19 _°28_°% $ I*1 ]P°]?

13200 2.922_°05 3,1439°02 1,030_+00 0,_456 0,?362 0°2_40 1.$89"19 1.27_*18 ],089"12
|]600 2°$63_'05 3,259_'02 1°00_P÷00 0,2012 0,?8_3 0,2373 1,589-19 X*279°1$ 1.05_'17

13600 2,2299°05 3,296_°02 9o8398o01 0,1%96 0.8222 0°19_8 1.52_°19 1.229°1 $ 1, 029°12
13500 1,9219°0_ 3.3?39°02 9,_]39°01 0,1228 0.8662 0,1525 1_5_o]9 1.2?9°$e 9,93_'18

]_000 1.260_°05 3,852_*02 9*670_°01 0,0919 0°8989 0,]2_ 1.56_'19 1*278°]_ 9*69 _°z$
16200 1,_90_*05 3°5309°02 9.6989"01 0,06?2 0.9252 0,0997 1,559°19 1,229"18 9,65_'18

16400 1.45)9*05 3,6109°02 9,258_°01 0,04_2 0,9455 0°0?88 1_S_9°19 1,2_P°18 9,23_°1_
14600 1°3649"05 3.690_°02 9*930_°01 0*0341 0.960_ 0.0623 ].549°19 _*2_9°18 9*01_ °_$

16800 1,2_99"05 3,271_°02 ,0118_00 0,0239 0,9219 0.0695 1._49°19 ].269"18 B*919°1_
]$000 1,193_°0$ 3,852_°02 ,0329+00 0,01_6 0.9900 0,0392 1.539o19 1,268"]8 8,629"18

15200 1.162_°0$ 3,935_'02 ,05_÷00 0.0115 0,9852 0,0321 1_$29°19 ],2_*]_ 9.439"t8

15900 ],]OQ_*O$ 6,01?P'02 ,0529+00 0,00?9 0,9898 0,02_2 1,528o19 1.26_'1_ _.25_°18
15600 1,0720°05 _,10_°02 ,]099+00 0,005_ 0,9926 0.02]? 1.51_*19 ],25_'$8 $,05_°18

15500 1,0599°05 6.185_°02 ,132_÷00 0,0038 0,9987 0,0192 _S]_°_ 9 1,2_9°1 $ ?,919°18
16000 ],065_°05 4,220_'02 ,]$?P*O0 0,0026 0°9961 0.015_ • ,50_°19 1,_9oI_ ?.T5_ol8

16200 1.0639°0_ 6*35_°02 1.1978+00 0*0018 0.9921 0*0133 1*50_'19 1,259°1$ ?'59_°] $
t6400 _,0439"05 6,4_19"02 1,2289_00 0.0013 0,9978 0,0%]6 ]_49_°19 1.25_°18 ?,6_P'18
16600 1*042_°0_ 4,528_°02 ],2599÷00 0,0009 0,9984 0,0]02 I, 69_°14 1"259°]8 _'30_°18

16500 1,056_*05 9,615_°02 1°2919+00 0,0006 0,998? 0,0091 1_69_'19 ]*25_°16 ?°169°18

1TO00 ],065_°0$ 6,?0]_'0_ _,_29_÷00 0,0005 0,9990 0,008_ 1,6_9*19 ]*269"15 ?,029°t8
12200 1,0??_*05 4.2919°02 1,352_+00 0,0003 0,999_ 0°0025 1*6_°] 9 1,24_'_8 6,899°18

I?_00 1,0938°0_ 6,_09"02 1.3918÷00 0,0002 0.999_ 0,0069 1,82_°_ 9 1,24_'18 6,269"_a
17600 1,1099°0$ 4,9T09°02 1,62_9+00 0,0002 0.9995 0,0069 1_620*19 1,2_9"18 6,639°18

]?S00 1,12B_'05 S°0609°02 1.659_+00 0,0001 0°999_ 0,0060 1_66_*$9 1°_89°1 $ 8,5% 9°18
18000 1*1689°05 5.1519"02 |,494_00 0.0001 0.999_ 0,0052 1, 46_°19 1°249°1_ 6*a0_°16
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PRESSUR[ (N/W_) IS

ICO000Q
TRA_SPCRT DATA _UILI_RtUi AE_ON

LOG[PRESSUREj= 6

TE _p _I$_OSITY 6_IDIr_ TnTCO_P R_ACT EL{CTR pRANOTL Q&A _AI QII

KELVIN KG/_-SEC WP/$EC N_/_-SEC-DE_ _AC_ION$ W2 _ W2
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APPENDIX II

SHOCK TUBE SIDE-WALL BOUNDARY LAYER SOLUTIONS FOR

Uw = 6000 m/sec, Pl - 5 mm Hg

Numerical results for an equilibrium argon shock tube side-wall

boundary layer is presented for the case

U = 6000 m/sec
W

U 2 : 675 m/sec

T = 14,100°K

T = 300°K
W

These conditions are approximately obtained behind an argon shock wave

with U s = 6000 m/sec and TI = 298°K' Pl = 5 mmHg

The symbols used are the following

Z

F

G

U

H

TEMP

VEL

ALFA

NE

PR

ROMY

YSTAR

Similarity parameter

K(_)

_(_)

Dimensionless velocity u
.

Dimensionless enthalpy h

Temperature T

Velocity u

Degree of ionization

Number density of free electrons

Prandtl number Pr

Inverse density viscosity product (O_)_/(P_)
.

Dimensionless wall distance y defined by equation

(6°3o)

MESA - units are used throughout the calculation.
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INPUT DATA AS FOLLON5

PRESSURE(N/M2) UWALL U2

340000 6000,0000000000 675,0000000000

T H ALPA NE RQ CP ONINU$

KELVIN NM/KG 1/43 KG/M3 NN/(KG OEG) R[C/S[C'ELECTRON

16100 1.829678+07 OI2_|_O 3.3955P,23 9.]3108*02 5.75919+03 "5.56960+05

TEMP VZSCOSITY AMB|OZFF TOTCOND REACT ELECTR PRANOTL OAA CA| O|Z
KELVIN KG/Mo$(C M2/SEC NM/M-$EC°OEG FRACTIONS 42 42 #2

14100 1.1788-04 1.0278-03 1.6928+00 002433 0.T049 0.4011 1.$58-19 1.278°38 7.008°18

T VISCRAT10 OENSRAT|O RU PR

300 0.1831 58,340 0.0936 0.6411

500 0,2T00 35,004 0*3058 0,6444
700 0.3487 25.003 0.1147 0.6466

900 0.4220 19.447 0.1218 0.6482

1100 0,4936 35,91| 0,1279 0,6495

1300 0,5583 13,463 0.1333 0,6506

IS00 0.6222 11.668 0.1377 0.6515
IT00 0,6843 10,295 0,1419 0,6523

1900 0*7447 9.212 0.1458 0*6530
2100 0,8036 8,334 0.1493 0,6537

2300 0,0611 7,610 001528 0,6543

2500 0,917A 7,001 0,1557 0,6548

2700 0,9727 6.482 0,1586 0,6553
2900 1,0270 6,035 0,3613 0,6558

3100 1,0804 5.646 0,1639 006563
3300 1.1329 5.304 0,1664 0,6567

3500 1.1847 5.001 0.1688 0.6570

3700 1.2359 40730 0.1711 0.6574
3900 1.2863 1.188 0,3732 006578

4100 1.3361 4.269 0.1753 0.6581
4300 1.3854 4.070 0,I773 0,6584

4500 2.4341 3,889 0.1793 0,6587

4T00 1.4823 3.724 0.1032 0.6590

4900 1,5300 3.572 0,1830 0,6593

5100 3*5T72 3.432 0.1848 0.6_96
5300 1.6240 3.302 0,1865 0,6564

5500 1,6703 3,102 0.1881 006539

5700 1.7163 3.0T1 0*3808 0.6496
5900 1.7618 2.966 0,1933 0.6429

6100 1.8069 2,869 0,1929 0,6332
6300 1.0516 2.778 0.1944 0,6198

6500 1,8959 2,692 0,1959 0,6028

6700 1,9397 2.612 0,1978 0,5824
6900 1,9829 2,536 0.1988 0,5595

7100 2.0256 2.465 0.2003 0.5354
7300 2.0676 2.397 0.2018 0.5113

T500 2.1088 2.333 0.2033 0.4884
7700 2.1490 2.272 0.2068 0.4677

7900 2,1879 2,214 0,2065 0.4497

8100 2.2254 2,159 0*2082 0.4347

6300 2.2612 2.106 0.2100 0.4229
8500 2.294? 2.055 0.2120 004142

8700 2,3256 2,007 0,2143 0,4086

8900 2,3535 1.960 0,2167 0,4058
9100 2.37T8 1.916 0.2196 0.6057

9300 2,3974 1,072 0,2220 0,4002

9500 2.4123 1.830 0.2265 0.4129
9?00 2.4235 t,TgO 0,230? 0,4196

9900 2*4244 1.750 0.235T 0.4280

10100 2*6202 1.712 0.2414 0.4378
10300 204084 1.674 0.2481 0.4485

10500 2.3884 h637 0,2550 0.4598

10700 2.3598 1,600 0,2648 0.4?33
10900 2.3223 2.564 0.2753 0.4025

11100 2.2759 1.528 0.2875 0.4928

11300 2.2208 1.493 0.3016 0.5020
11500 2.1572 3.457 0.3181 0.5095

11700 2.0859 1.422 0,3371 0.5351

11900 2,0076 1,307 0,3591 0.5184

12100 3,9233 1.352 003846 0.5191
12300 1.8341 1,317 0,4141 0,53?3

12500 1.7431 1.282 0.4482 005129
12700 1,6456 1,246 0,4876 005058

12900 10S489 3.211 0,5332 0,4963
13100 1.4521 2,1T5 0.5059 0.4645

33300 1,3563 3.140 0,6468 0.4706

13500 1.2624 1.105 0.7171 0.4549
13700 1.3733 1.069 0.7983 0.4376

13900 1.0837 1.035 0.8919 0,4191

14100 1,0000 1,000 1.0000 0.4011
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p 1l

3aO000

Atzg,685_-02

B*=1.2519"01

Z F G U* H*

O.OCO 1,000 1,000 1.0000 0,0000

0,050 1,154 1,156 0.9948 0,0068

0,100 1.228 1,279 0.9889 0.014_

0,150 1.38_ 1,303 0,9R24 0.022?

0,200 1,478 1,473 0.9755 O.031T

0.250 1,564 1.554 0,9681 0.0411

0,300 1,64_ 1,627 0.9603 0.0511

0,350 1,719 1,693 0.9522 0,0615

0,400 1,790 1,755 0,9437 0,0722

0,450 1.859 1,812 0.9349 0,0034

0.500 1.929 1._b6 0,9257 0,0949

0.550 1,987 1.916 0.9162 0.1067

0.600 2,048 1.963 0.9065 0.11_9

0,650 2.108 2.008 0,8964 0.1313

O,?CO 2.166 2,038 0,8860 0.1439

0.?50 2,223 2.049 0,8754 0.1567

0°000 2.227 2.015 0.86_5 0.1695

0,050 2.329 1.92_ 0,8534 0,1818

0.900 2,378 1.798 0,8420 0.1935

0.950 2.425 1,624 0.8303 0,2043

1,0C0 2.670 1,52_ 0,8185 0.2]_5

1,050 2.515 1,50A 0.8064 0.2241

1,100 2.561 1.a62 0,7941 0.2333

1.150 2.608 1.643 0.7816 0.2n26

1,200 2.658 1,643 0,7689 0.251_

1.250 2,T12 1,460 0,T559 0.2605

1,300 2,769 1._90 0.7_26 0.2697

1,350 2,831 1.532 0,_290 0.2?92

1.400 2.898 1,585 0.7152 0.28_9

TEMP V[L ALFA N[ PR ROMY

300 6000 0.0000 0.6_I O.OQ_

535 597? 0.0_00 0._ 0.100

801 5941 0.0000 0.6_? 0.118

1092 590_ 0.0000 0.649 0.129

1_03 5869 0.0000 0.651 0.13_

1733 5830 0.0000 0.6_ 0.|43

2080 5700 0.0000 0.654 0.149

2442 5745 0.0000 0.65_ 0.15_

2818 5700 0.0_00 0.6_ 0.100

3207 5653 0.0000 2._27_÷13 0.656 0.I_5

3608 560_ 0.0000 1._91_÷15 0.652 0.170

4020 5554 0.0_00 2.391_÷I 6 0._ 0o17_

_2 5502 0.0000 2°27_P*1? 0._59 0.I29

6875 5_68 0.0000 1._909_18 0.659 0.Im3

5317 5393 0.0000 7*2679_18 0._56 0.I_7

5?62 5337 0.0000 2._099÷IQ 0*6_8 0.IQ0

6205 5279 0.0000 8.9389÷19 0.627 0.19_

6632 5219 0.0_01 2.3_99÷20 0.59_ 0.197

7031 5159 0.0001 S.2529+_0 0.5_ 0.200

7397 509? 0.0003 1.014F÷21 0.50_ 0.203

7?30 5033 0.000_ 1.2519÷21 0._65 C.2_5

80]6 _9_9 0.0009 2.77?P÷_I 0°_39 0.2_

_319 _904 0.0_1_ a.12_÷21 0°_2_ 0.210

0582 _832 0°0020 S.832@+21 0.412 0.213

8829 4269 0.0028 To919@_21 0.40_ 0.21_

9063 _?OU 0.0030 I.0_1@÷22 0._06 0.219

928_ 4629 0.0050 1.332@÷22 0._0_ 0.223

9_95 _557 0°0065 I._66P_2_ 0._13 0.2_6

9697 _403 0.0081 2*0_49÷22 0._19 0.231

YSTAR

0.00000

0.00015

0.00039

0.00023

0.00116

0.00121

0,00238

0,00312

0.00409

0.00515

0,00636

0,00772

0.0092_

0.01093

0.01229

0.01_83

0.01706

0.01946

0.02205

0.02_01

0,02274

0,03082

0,03406

0,03?45

0,0_100

0,0_969

0.04854

0.0_254

0.05621

1._50 2.971 1.646 0.7010 0.2990 9890 4_00 0.0100 2._669,22 0._2_ 0.235 0.06104

1.500 3.051 I.71_ 0.606_ 0.3095 10026 _330 0°0121 2.9339÷22 0._32 0.241 0.06553

1.550 3.137 1.291 0.6214 0.3205 10255 _250 0.0146 3.a_5_*22 0._ 0.2_6 0.0?021

1.600 3.231 1.87_ 0.6560 0.3319 10_28 _168 0.0122 4.001_÷22 0._56 0.2_3 0.07502

1.650 3.333 1.962 0.6401 0.3_3_ 10595 4083 0.0202 _*_01_÷22 0._6_ 0.260 0.08012

1.700 3.644 2.05_ 0.623? 0.3565 10?56 3996 0.023_ 5.2_P*22 0._7_ 0.26@ 0.08530

I*?50 3.563 2.IS1 0.606? 0.3696 10913 3906 0.0270 5*9299÷22 0._ 0.2?6 0.09005

1.800 3.692 2.252 0.5092 0.383_ 11066 3012 0.0308 6.655_÷22 0._91 _.2_5 0.09656

1.050 3.830 2.356 0.5709 0.39?0 11214 3215 0.0350 7._18_÷22 0._9_ 0.295 0.10251

1.900 3.97? 2.463 0._520 0.4120 11358 3615 0.039_ _.220_÷22 0.50_ 0.306 0.10023

1.950 4.135 2*5?2 0._324 0*4286 11499 3510 0.0_42 9o060_22 0.509 0.3_0 0.1152S

2.000 _.302 2.683 0.5120 0.44S0 11636 3_01 0.0_92 9.9_I_+22 0.516 0.3_I 0.12208

2.050 4.429 2.?97 0._907 0.4621 11?69 3260 0.05_6 I.0839÷23 0.51_ C.3_a 0.12926

2.100 _.665 2.912 0.4686 0._800 11900 3120 0*0603 1.1779÷23 0°$1_ 0.3_9 _.13682

2.1_0 4.058 3.020 0.4455 0._9_6 12028 3047 0°0663 I*2739÷23 0.519 0.325 0.14401

2.200 5.059 3.146 0._215 0.5179 12153 2920 0.0726 1.3729+23 0.519 0.39_ 0.15320

2.250 5.265 3.26? 0.3965 0.5379 12226 22R6 0.0?93 I°4?49÷23 0.516 0._10 0.16229

2*300 5*4?2 3.380 0*3?05 0.550? 12396 2648 0.0_62 ]*_77_÷23 0.51_ 0._0 0.17191

2.350 5.678 3.513 0.3_35 0.5803 12515 250_ 0.0935 1.6839÷23 0.512 0.4_1 0.18224

2*400 5.075 3.641 0.3155 0.6027 12631 2355 0.1011 1.791_÷23 0.509 0.423 0.19330

2.650 6.056 3.272 0.2866 0.6258 12245 2201 0.1090 1.900_÷23 0°504 0.497 0.20562

2.500 6.211 3.908 0.2569 0.6499 12058 2043 0°1173 2*0119÷23 0.491 0.523 0.21862

2.550 6.323 4.049 0.2266 0.6762 12969 1601 0o1259 2.124_23 0.49? 0.5_0 0.23322

2.600 6.322 4.195 0.1958 0.7005 13029 1218 0.1349 2.239_23 0.48_ 0.560 0.24938

2.650 6.325 4.3_0 0.1650 0.7272 131RB 1554 0.In_3 2.355_÷23 0.4?9 0°611 0.262_9

2.?00 6.149 4.479 0.134? 0.7540 13296 1392 0.1540 2.672_*23 0._71 0.6_5 0.2879?

2.?50 5.795 4.$92 0.1057 0.2032 13402 1238 0.1690 2._89_÷23 0._63 0.6_1 0.3113_

2.800 5.226 4.640 0.0790 0.0121 13506 I09_ 0.1242 2.7069÷23 0._54 0.719 0°33018

2.850 4._28 _.597 0.05S5 0.0411 13606 970 0.1895 2._20_÷23 0._6 0.?_ 0.36098

2.900 3.456 4.300 0.0364 0.8693 1]?00 069 0.1945 2.92_23 0._3 m 0.79_ 0.40_0?

2.950 2.443 3.987 0.0221 0.09S5 13785 293 0.2039 3._26_+23 0._30 0.036 0.44331

3.000 1.550 3.43? 0.0125 0.91_0 13050 7_1 0.2122 3.]11_÷23 0._23 0.871 0._0610

3.050 0.904 2.820 0.0066 0o93|_ 13918 710 0.2192 3.182_23 0._I0 0.901 0.5315_

3.100 0.686 2.222 0.0033 0.9541 13965 693 0.2248 3.2_?_÷23 0._13 0.925 0.520?8

3.150 0.246 I.?00 0.0016 0.9663 14002 68_ 0.2292 3.2_0_÷23 0.410 0.945 0.62210

3.200 0.120 1.27_ 0.0008 0.9?56 14029 679 0.2325 3.312_÷23 0.40_ 0.9_0 0.6?606

3.250 0.056 0.9_1 0.0004 0.9825 14049 672 0.2350 3.3369*23 0.406 0.921 0.?2563

3.300 0.026 0.687 0.0002 0.9875 I_064 6?6 0.2366 3._53_÷23 0.405 0.9?9 0.72501

3°350 0.011 0.497 0.0001 0.9912 14025 6?5 0.2381 3.366_23 0._04 0.9_ 0.02423

3.600 0.005 0.35? 0.0001 0.9930 1_082 675 0.2391 3*3759_23 O.aO_ 0.990 0.B?654

3.450 0.002 0.25_ 0o0000 0.9952 14080 6?5 0.2392 3.301_÷23 0.402 0.993 0.92441

3.500 0.001 0.181 0.0000 0.9921 19092 6?5 0.2_02 3._06_+23 0._02 0.99S 0.9?432

3°S_0 0.000 0.122 0.0000 0.9980 14094 6?5 0.2906 3.309_÷23 0.402 0.997 1.02426

].600 0.000 0.089 0.0000 0.99_? 16096 675 0.2_00 3.3919_23 0.401 0.998 1.0?421

3.650 0.000 0.062 0.0000 0.9992 14090 6?5 0.2_10 3.393_÷23 0.a01 0.999 1.12610

3.?00 0.000 0.043 0.0000 0.9995 14099 675 0.2411 3.394_÷2] 0._01 0.999 1.12616

3.?_0 0.000 0.030 0.0000 0.9992 14099 6?5 0.2_12 3.395_÷23 0.4oI 1.0o0 1.2261_

3.000 0.000 0.020 0.0000 0.9999 14100 6?5 0.2412 3.]959+23 0._01 1.00o 1.2?612

3.050 0.000 o.014 0.0000 Io0000 1_1oo 6?5 o.2_13 3.3959_23 0.401 I°0O0 1.32411

3.900 0.000 0.000 0.0000 1.00oi 141o0 6?5 0.2_13 3.396_÷23 0._oI 1.000 1.32411

3.950 0.000 0.006 0.0000 1.00oi 14100 62_ 0.2_13 3._96_÷23 0.401 1.0_o 1.42410

4.000 0.0o0 0.004 0.o000 1o0001 141oo 675 0.2_13 3.3969÷23 0.401 1.0oo 1.47409

4.050 0.000 0.003 0.0000 1.0o02 1_100 675 o.2413 3.396_÷23 0.401 1.00o 1.52609

4_I00 0.000 0.002 0.0000 1.0002 14101 6?5 0.2_13 3.3969+23 o._01 1.0oo I.57_00

4.150 0.000 0.001 0.0000 1.0002 14101 675 0.2_13 3.396_*23 0.401 1.000 1.62606

_.200 0.000 0.001 0.0000 1.0002 14101 675 0.2413 3.3969*23 0.401 1.000 1.6?602

4.250 0.000 0.001 0.0000 1.0002 14101 6?5 0.2_13 3.3969÷23 0._0] 1.000 1.?2_02

6.300 0.000 0°000 0.0000 1.0002 14101 6?5 0.2413 3.3969,23 0._01 1.000 I.?7606

4.350 0.000 0°000 0°0000 1.0002 16101 6?5 0.2_13 3.3969÷23 0._01 1.000 1.82406

_._00 0.000 0.000 0.0000 1.0002 14101 6?5 0.2_1_ 3.3969÷23 O.aO! 1.000 1.0?405

4.450 0.000 0.000 0.0000 1.0002 16101 6?_ 0.241_ 3.3969_23 0.401 1.000 1.92605

D[LTAY AS • _U_CTION O_ X (015?ANC_ rROw $_00K)

FOR CAS[ YSTARml;NOTICE v PRO_ YSTAR

Y WM X(NET£R)

0.43191 0.010

_5


